Geometric Eisenstein series: twisted setting

被引:1
|
作者
Lysenko, Sergey [1 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Nancy, BP 239, F-54506 Vandoeuvre Les Nancy, France
关键词
Geometric Langlands program; Brylinski-Deligne extensions; covering groups; quantum geometric Langlands program; Eisenstein series;
D O I
10.4171/JEMS/738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple simply-connected group over an algebraically closed field k, and X a smooth connected projective curve over k. In this paper we develop the theory of geometric Eisenstein series on the moduli stack Bun(G) of G-torsors on X in the setting of the quantum geometric Langlands program (for etale (Q) over bar (l)-sheaves) in analogy with [3]. We calculate the intersection cohomology sheaf on the version of Drinfeld compactification in our twisted setting. In the case of G = SL2 we derive some results about the Fourier coefficients of our Eisenstein series. For G = SL2 and X = P-1 we also construct the corresponding theta-sheaves and prove their Hecke property.
引用
收藏
页码:3179 / 3252
页数:74
相关论文
共 50 条
  • [1] Geometric Eisenstein series
    A. Braverman
    D. Gaitsgory
    [J]. Inventiones mathematicae, 2002, 150 : 287 - 384
  • [2] Geometric Eisenstein series
    Braverman, A
    Gaitsgory, D
    [J]. INVENTIONES MATHEMATICAE, 2002, 150 (02) : 287 - 384
  • [3] Convolution identities for twisted Eisenstein series and twisted divisor functions
    Daeyeoul Kim
    Abdelmejid Bayad
    [J]. Fixed Point Theory and Applications, 2013
  • [4] Convolution identities for twisted Eisenstein series and twisted divisor functions
    Kim, Daeyeoul
    Bayad, Abdelmejid
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [5] Eisenstein series twisted by modular symbols for the group SLn
    Goldfeld, D
    Gunnells, PE
    [J]. MATHEMATICAL RESEARCH LETTERS, 2000, 7 (5-6) : 747 - 756
  • [6] Eisenstein series twisted with non-expanding cusp monodromies
    Ksenia Fedosova
    Anke Pohl
    [J]. The Ramanujan Journal, 2020, 51 : 649 - 670
  • [7] Eisenstein series twisted with non-expanding cusp monodromies
    Fedosova, Ksenia
    Pohl, Anke
    [J]. RAMANUJAN JOURNAL, 2020, 51 (03): : 649 - 670
  • [8] Weyl group multiple Dirichlet series III:: Eisenstein series and twisted unstable Ar
    Brubaker, B.
    Bump, D.
    Friedberg, S.
    Hoffstein, J.
    [J]. ANNALS OF MATHEMATICS, 2007, 166 (01) : 293 - 316
  • [9] On a certain metaplectic Eisenstein series and the twisted symmetric square L-function
    Takeda, Shuichiro
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 103 - 157
  • [10] Twisted Eisenstein series, cotangent-zeta sums, and quantum modular forms
    Folsom, Amanda
    [J]. TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 7 (01): : 33 - 48