Eisenstein series twisted with non-expanding cusp monodromies

被引:1
|
作者
Fedosova, Ksenia [1 ]
Pohl, Anke [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
[2] Univ Bremen, Dept Math 3, Bibliothekstr 5, D-28359 Bremen, Germany
来源
RAMANUJAN JOURNAL | 2020年 / 51卷 / 03期
关键词
Eisenstein series; Non-unitary representation; Non-expanding cusp monodromy; VALUED MODULAR-FORMS; TRACE FORMULA;
D O I
10.1007/s11139-019-00205-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a geometrically finite Fuchsian group and suppose that chi:Gamma -> GL(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi :\Gamma \rightarrow {{\,\mathrm{GL}\,}}(V)$$\end{document} is a finite-dimensional representation with non-expanding cusp monodromy. We show that the parabolic Eisenstein series for Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} with twist chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} converges on some half-plane. Further, we develop Fourier-type expansions for these Eisenstein series.
引用
收藏
页码:649 / 670
页数:22
相关论文
共 50 条
  • [1] Eisenstein series twisted with non-expanding cusp monodromies
    Ksenia Fedosova
    Anke Pohl
    [J]. The Ramanujan Journal, 2020, 51 : 649 - 670
  • [2] Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy
    Fedosova, Ksenia
    Pohl, Anke
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (01):
  • [3] Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy
    Ksenia Fedosova
    Anke Pohl
    [J]. Selecta Mathematica, 2020, 26
  • [4] Symmetric non-expanding horizons
    Lewandowski, Jerzy
    Pawlowski, Tomasz
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) : 6031 - 6058
  • [5] Instabilities in non-expanding glasma
    Fujii, Hirotsugu
    Itakura, Kazunori
    Iwazaki, Aiichi
    [J]. NUCLEAR PHYSICS A, 2009, 828 (1-2) : 178 - 190
  • [6] Non-expanding maps and Busemann functions
    Karlsson, A
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 1447 - 1457
  • [7] Geometric Eisenstein series: twisted setting
    Lysenko, Sergey
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (10) : 3179 - 3252
  • [8] Symmetry reduction on non-expanding horizons
    Basu, R.
    Chatterjee, A.
    Ghosh, A.
    [J]. VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [9] Local symmetries of non-expanding horizons
    Basu, Rudranil
    Chatterjee, Ayan
    Ghosh, Amit
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (23)
  • [10] Non-expanding impulsive gravitational waves
    Podolsky, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (10) : 3229 - 3239