Privacy-Preserving federated learning in medical diagnosis with homomorphic re-Encryption

被引:34
|
作者
Ku, Hanchao [1 ]
Susilo, Willy [1 ,2 ]
Zhang, Yudi [1 ,2 ]
Liu, Wenfen [3 ]
Zhang, Mingwu [1 ,3 ]
机构
[1] Hubei Univ Technol, Sch Comp, Wuhan 430068, Peoples R China
[2] Univ Wollongong, Sch Comp & Informat Technol, Wollongong, NSW 2522, Australia
[3] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Privacy-Preserving; Federated learning; Gradient descent; Homomorphic re-Encryption; SECURITY;
D O I
10.1016/j.csi.2021.103583
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike traditional centralized machine learning, distributed machine learning provides more efficient and useful application scenarios. However, distributed learning may not meet some security requirements. For example, in medical treatment and diagnosis, an increasing number of people are using IoT devices to record their personal data, when training medical data, the users are not willing to reveal their private data to the training party. How to collect and train the data securely has become the main problem to be resolved. Federated learning can combine a large amount of scattered data for training, and protect user data. Compared with general distributed learning, federated learning is more suitable for training on scattered data. In this paper, we propose a privacy preserving federated learning scheme that is based on the cryptographic primitive of homomorphic re encryption, which can protect user data through homomorphic re-encryption and trains user data through batch gradient descent (BGD). In our scheme, we use the IoT device to encrypt and upload user data, the fog node to collect user data, and the server to complete data aggregation and re-encrypting. Besides, the security analysis and experimental results show that our scheme can complete model training while preserving user data and local models.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Privacy-Preserving Deep Learning via Additively Homomorphic Encryption
    Moriai, Shiho
    2019 IEEE 26TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2019, : 198 - 198
  • [22] Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
    Froelicher, David
    Troncoso-Pastoriza, Juan R.
    Raisaro, Jean Louis
    Cuendet, Michel A.
    Sousa, Joao Sa
    Cho, Hyunghoon
    Berger, Bonnie
    Fellay, Jacques
    Hubaux, Jean-Pierre
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [23] Privacy-preserving collaboration in blockchain-enabled IoT: The synergy of modified homomorphic encryption and federated learning
    Anitha, Raja
    Murugan, Mahalingam
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2024,
  • [24] Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System
    Zhang, Li
    Xu, Jianbo
    Vijayakumar, Pandi
    Sharma, Pradip Kumar
    Ghosh, Uttam
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2864 - 2880
  • [25] A privacy-preserving parallel and homomorphic encryption scheme
    Min, Zhaoe
    Yang, Geng
    Shi, Jingqi
    OPEN PHYSICS, 2017, 15 (01): : 135 - 142
  • [26] A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
    Yang, Wencheng
    Wang, Song
    Cui, Hui
    Tang, Zhaohui
    Li, Yan
    SENSORS, 2023, 23 (07)
  • [27] Privacy-Preserving Federated Learning via Functional Encryption, Revisited
    Chang, Yansong
    Zhang, Kai
    Gong, Junqing
    Qian, Haifeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1855 - 1869
  • [28] Privacy Preserving Federated Learning: A Novel Approach for Combining Differential Privacy and Homomorphic Encryption
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 162 - 177
  • [29] ID-Based Multireceiver Homomorphic Proxy Re-Encryption in Federated Learning
    Fan, Chun-, I
    Hsu, Ya-Wen
    Shie, Cheng-Han
    Tseng, Yi-Fan
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2022, 18 (04)
  • [30] Privacy-Preserving Fair Learning of Support Vector Machine with Homomorphic Encryption
    Park, Saerom
    Byun, Junyoung
    Lee, Joohee
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 3572 - 3583