Privacy-Preserving federated learning in medical diagnosis with homomorphic re-Encryption

被引:34
|
作者
Ku, Hanchao [1 ]
Susilo, Willy [1 ,2 ]
Zhang, Yudi [1 ,2 ]
Liu, Wenfen [3 ]
Zhang, Mingwu [1 ,3 ]
机构
[1] Hubei Univ Technol, Sch Comp, Wuhan 430068, Peoples R China
[2] Univ Wollongong, Sch Comp & Informat Technol, Wollongong, NSW 2522, Australia
[3] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Privacy-Preserving; Federated learning; Gradient descent; Homomorphic re-Encryption; SECURITY;
D O I
10.1016/j.csi.2021.103583
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike traditional centralized machine learning, distributed machine learning provides more efficient and useful application scenarios. However, distributed learning may not meet some security requirements. For example, in medical treatment and diagnosis, an increasing number of people are using IoT devices to record their personal data, when training medical data, the users are not willing to reveal their private data to the training party. How to collect and train the data securely has become the main problem to be resolved. Federated learning can combine a large amount of scattered data for training, and protect user data. Compared with general distributed learning, federated learning is more suitable for training on scattered data. In this paper, we propose a privacy preserving federated learning scheme that is based on the cryptographic primitive of homomorphic re encryption, which can protect user data through homomorphic re-encryption and trains user data through batch gradient descent (BGD). In our scheme, we use the IoT device to encrypt and upload user data, the fog node to collect user data, and the server to complete data aggregation and re-encrypting. Besides, the security analysis and experimental results show that our scheme can complete model training while preserving user data and local models.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Privacy-Preserving Distributed Deep Learning via Homomorphic Re-Encryption
    Tang, Fengyi
    Wu, Wei
    Liu, Jian
    Wang, Huimei
    Xian, Ming
    ELECTRONICS, 2019, 8 (04)
  • [2] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [3] PDLHR: Privacy-Preserving Deep Learning Model With Homomorphic Re-Encryption in Robot System
    Chen, Yange
    Wang, Baocang
    Zhang, Zhili
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 2032 - 2043
  • [4] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517
  • [5] Privacy-preserving multi-party deep learning based on homomorphic proxy re-encryption
    Shen, Xiaoying
    Luo, Xue
    Yuan, Feng
    Wang, Baocang
    Chen, Yange
    Tang, Dianhua
    Gao, Le
    JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 144
  • [6] Practical Privacy-Preserving Medical Diagnosis using Homomorphic Encryption
    Carpov, Sergiu
    Thanh Hai Nguyen
    Sirdey, Renaud
    Constantino, Gianpiero
    Martinelli, Fabio
    PROCEEDINGS OF 2016 IEEE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2016, : 593 - 599
  • [7] Privacy-preserving federated learning based on multi-key homomorphic encryption
    Ma, Jing
    Naas, Si-Ahmed
    Sigg, Stephan
    Lyu, Xixiang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5880 - 5901
  • [8] PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data
    Wang, Bo
    Li, Hongtao
    Guo, Yina
    Wang, Jie
    APPLIED SOFT COMPUTING, 2023, 146
  • [9] Privacy-Preserving Collective Learning With Homomorphic Encryption
    Paul, Jestine
    Annamalai, Meenatchi Sundaram Muthu Selva
    Ming, William
    Al Badawi, Ahmad
    Veeravalli, Bharadwaj
    Aung, Khin Mi Mi
    IEEE ACCESS, 2021, 9 : 132084 - 132096
  • [10] Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning
    Fang, Haokun
    Qian, Quan
    FUTURE INTERNET, 2021, 13 (04):