Performance Measurement for Interactive Multi-objective Evolutionary Algorithms

被引:7
|
作者
Long Nguyen [1 ]
Hung Nguyen Xuan [2 ]
Lam Thu Bui [2 ]
机构
[1] Natl Def Acad, Dept Informat Technol, Hanoi, Vietnam
[2] Le Quy Don Tech Univ, Fac Informat Technol, Hanoi, Vietnam
关键词
D O I
10.1109/KSE.2015.51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper suggests to use a different metric for performance of multiple-point interactive evolutionary multi-objective algorithms. We defined a preferred region based on a set of user's reference points. Based on the preferred region, we also define a User based Front (UbF) which is generated from the preferred region. UbF is used in calculation of Generational Distance (GD) and Inverse Generational Distance (IGD). The usage of the metric in experiments indicated meaningful comparisons for interactive multi-objective evolutionary algorithms using multiple reference points.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [31] Multi-objective pole placement with evolutionary algorithms
    Sanchez, Gustavo
    Villasana, Minaya
    Strefezza, Miguel
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 417 - +
  • [32] Study of Evolutionary Algorithms for Multi-objective Optimization
    Gaikwad R.
    Lakshmanan R.
    SN Computer Science, 3 (5)
  • [33] Evolutionary algorithms for multi-objective design optimization
    Sefrioui, M
    Whitney, E
    Periaux, J
    Srinivas, K
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 224 - 237
  • [35] The review of multiple evolutionary searches and multi-objective evolutionary algorithms
    Hossein Rajabalipour Cheshmehgaz
    Habibollah Haron
    Abdollah Sharifi
    Artificial Intelligence Review, 2015, 43 : 311 - 343
  • [36] The review of multiple evolutionary searches and multi-objective evolutionary algorithms
    Cheshmehgaz, Hossein Rajabalipour
    Haron, Habibollah
    Sharifi, Abdollah
    ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (03) : 311 - 343
  • [37] Acceleration of Parametric Multi-objective Optimization by an Initialization Technique for Multi-objective Evolutionary Algorithms
    Kaji, Hirotaka
    Ikeda, Kokolo
    Kita, Hajime
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2291 - +
  • [38] Parallelization of multi-objective evolutionary algorithms using clustering algorithms
    Streichert, F
    Ulmer, H
    Zell, A
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 92 - 107
  • [39] Interactive multi-objective evolutionary optimization of software architectures
    Ramirez, Aurora
    Raul Romero, Jose
    Ventura, Sebastian
    INFORMATION SCIENCES, 2018, 463 : 92 - 109
  • [40] Effects of Dominance Resistant Solutions on the Performance of Evolutionary Multi-Objective and Many-Objective Algorithms
    Ishibuchi, Hisao
    Matsumoto, Takashi
    Masuyama, Naoki
    Nojima, Yusuke
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 507 - 515