Variable step-size implementation of sixth-order Numerov-type methods

被引:21
|
作者
Medvedeva, Marina A. [1 ]
Simos, Theodore E. [2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ural Fed Univ, Mira 19, Ekaterinburg, Russia
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Dongtong Rd 705, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi, Greece
[6] Univ Athens, Gen Dept, Euripus Campus, Athens 34400, Greece
关键词
explicit hybrid Numerov; variable step; y '' = f (x; y); 2-STEP HYBRID METHODS; NOUMEROV-TYPE METHOD; VANISHED PHASE-LAG; RUNGE-KUTTA PAIRS; P-STABLE METHOD; 4-STEP METHODS; HIGH-ORDER; SYMBOLIC DERIVATION; SOLVING Y''; 6TH ORDER;
D O I
10.1002/mma.5929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The explicit sixth-order Numerov-type family of methods is considered. A new representative from this family is produced and equipped with a cheap step-size changing algorithm. Actually, after the completion of a step, this remains the same, halved, or doubled. The off-step points required for such technique are evaluated through local interpolant. Numerical tests over various problems illustrate the efficiency gained by this approach.
引用
收藏
页码:1204 / 1215
页数:12
相关论文
共 50 条