Variable step-size implementation of sixth-order Numerov-type methods

被引:21
|
作者
Medvedeva, Marina A. [1 ]
Simos, Theodore E. [2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ural Fed Univ, Mira 19, Ekaterinburg, Russia
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Dongtong Rd 705, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi, Greece
[6] Univ Athens, Gen Dept, Euripus Campus, Athens 34400, Greece
关键词
explicit hybrid Numerov; variable step; y '' = f (x; y); 2-STEP HYBRID METHODS; NOUMEROV-TYPE METHOD; VANISHED PHASE-LAG; RUNGE-KUTTA PAIRS; P-STABLE METHOD; 4-STEP METHODS; HIGH-ORDER; SYMBOLIC DERIVATION; SOLVING Y''; 6TH ORDER;
D O I
10.1002/mma.5929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The explicit sixth-order Numerov-type family of methods is considered. A new representative from this family is produced and equipped with a cheap step-size changing algorithm. Actually, after the completion of a step, this remains the same, halved, or doubled. The off-step points required for such technique are evaluated through local interpolant. Numerical tests over various problems illustrate the efficiency gained by this approach.
引用
收藏
页码:1204 / 1215
页数:12
相关论文
共 50 条
  • [1] Interpolants for sixth-order Numerov-type methods
    Alolyan, Ibraheem
    Simos, T. E.
    Tsitouras, Ch.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7349 - 7358
  • [2] Sixth-order, P-stable, Numerov-type methods for use at moderate accuracies
    Medvedeva, Marina A.
    Simos, T. E.
    Tsitouras, Ch.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6923 - 6930
  • [3] Local interpolants for Numerov-type methods and their implementation in variable step schemes
    Medvedev, Maxim A.
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7047 - 7058
  • [4] Eighth-Order Numerov-Type Methods Using Varying Step Length
    Alshammari, Obaid
    Ben Aoun, Sondess
    Kchaou, Mourad
    Simos, Theodore E.
    Tsitouras, Charalampos
    Jerbi, Houssem
    MATHEMATICS, 2024, 12 (14)
  • [5] On Tenth-Order Hybrid Numerov-Type Methods
    Abbassi, Rabeh
    Ben Aoun, Sondess
    Kchaou, Mourad
    Simos, Theodore E.
    Tsitouras, Charalampos
    Jerbi, Houssem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [6] Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan, V
    Karpukhina, Tamara, V
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICS, 2021, 9 (21)
  • [7] On Ninth Order, Explicit Numerov-Type Methods with Constant Coefficients
    Tsitouras, Ch.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [8] On Ninth Order, Explicit Numerov-Type Methods with Constant Coefficients
    Ch. Tsitouras
    T. E. Simos
    Mediterranean Journal of Mathematics, 2018, 15
  • [9] Trigonometric fitted, eighth-order explicit Numerov-type methods
    Berg, Dmitry B.
    Simos, T. E.
    Tsitouras, Ch.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) : 1845 - 1854
  • [10] Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions
    T.E. Simos
    I.T. Famelis
    C. Tsitouras
    Numerical Algorithms, 2003, 34 : 27 - 40