GLOBAL WEAK SOLUTIONS FOR A KINETIC-FLUID MODEL WITH LOCAL ALIGNMENT FORCE IN A BOUNDED DOMAIN

被引:6
|
作者
LI, Fucai [1 ]
LI, Yue [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
compressible Navier-Stokes equations; local alignment force; non-homogeneous boundary conditions; weak solutions; Vlasov-Fokker-Planck equation; NAVIER-STOKES EQUATIONS; EXISTENCE; SYSTEM; SEDIMENTATION;
D O I
10.3934/cpaa.2021122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a kinetic-fluid model in a 3D bounded domain. More precisely, this model is a coupling of the Vlasov-Fokker-Planck equation with the local alignment force and the compressible Navier-Stokes equations with nonhomogeneous Dirichlet boundary condition. We prove the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient gamma > 3/2) and hence extend the existence result of Choi and Jung [Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, arXiv: 1912.13134v2], where the velocity of the fluid is supplemented with homogeneous Dirichlet boundary condition.
引用
收藏
页码:3567 / 3588
页数:22
相关论文
共 50 条