Mapping Charge Percolation in Flowable Electrodes Used in Capacitive Deionization

被引:28
|
作者
Dixit, Marm B. [1 ]
Moreno, Daniel [2 ]
Xiao, Xianghui [3 ]
Hatzell, Marta C. [2 ]
Hatzell, Kelsey B. [1 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37203 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30313 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source II, Upton, NY 11973 USA
来源
ACS MATERIALS LETTERS | 2019年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
SUSPENSION ELECTRODES;
D O I
10.1021/acsmaterialslett.9b00106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrical percolation in flow electrode capacitive deionization is critical to mitigate electronic resistance and maximize ion electrosorption. It is experimentally challenging to characterize mass and charge transfer phenomena in flow electrodes with space and time dimensions. Here, we demonstrate a way to resolve charge percolation pathways at sub-micron resolutions using synchrotron X-ray tomography and computational techniques. Three-dimensional reconstructed images provide a means to measure important micro- and mesoscale electrode properties, such as pore-size distribution, aggregation size, and percolation properties. Developing this microstructural understanding of flow-electrodes is necessary to understand how transport limitations impact separations performance and to inform operating conditions at the technology level (flow regimes).
引用
收藏
页码:71 / 76
页数:11
相关论文
共 50 条
  • [1] Percolation Characteristics of Conductive Additives for Capacitive Flowable (Semi-Solid) Electrodes
    Akuzum, Bilen
    Singh, Pushpendra
    Eichfeld, Devon A.
    Agartan, Lutfi
    Uzun, Simge
    Gogotsi, Yury
    Kumbur, E. Caglan
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) : 5866 - 5875
  • [2] Carbon electrodes for capacitive deionization
    Huang, Zheng-Hong
    Yang, Zhiyu
    Kang, Feiyu
    Inagaki, Michio
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 470 - 496
  • [3] Capacitive neutralization deionization with flow electrodes
    Wang, Miao
    Hou, Shujin
    Liu, Yong
    Xu, Xingtao
    Lu, Ting
    Zhao, Ran
    Pan, Likun
    ELECTROCHIMICA ACTA, 2016, 216 : 211 - 218
  • [4] Mesoporous Carbon Electrodes for Capacitive Deionization
    Lee, Dong-Ju
    Park, Jin-Soo
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2014, 17 (01): : 57 - 64
  • [5] A comparative study on capacitive deionization and membrane capacitive deionization with powdered activate carbon as electrodes
    Wen, Qinxue
    Yang, Hong
    Zhang, Huichao
    Chen, Zhiqiang
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2014, 46 (06): : 55 - 59
  • [6] Limitation of Charge Efficiency in Capacitive Deionization
    Avraham, Eran
    Bouhadana, Yaniv
    Soffer, Abraham
    Aurbach, Doron
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (06) : P95 - P99
  • [7] Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization
    Wu, Tingting
    Wang, Gang
    Zhan, Fei
    Dong, Qiang
    Ren, Qidi
    Wang, Jianren
    Qiu, Jieshan
    WATER RESEARCH, 2016, 93 : 30 - 37
  • [8] Influence of thermal treatment conditions on capacitive deionization performance and charge efficiency of carbon electrodes
    Agartan, Lutfi
    Akuzum, Bilen
    Mathis, Tyler
    Ergenekon, Kurtay
    Agar, Ertan
    Kumbur, E. Caglan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 202 : 67 - 75
  • [9] Electrode configuration optimization of capacitive deionization cells based on zero charge potential of the electrodes
    Ma, Dongya
    Wang, Yue
    Han, Xinyu
    Xu, Shichang
    Wang, Jixiao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 189 : 467 - 474
  • [10] Capacitive deionization with wire-shaped electrodes
    Mubita, T. M.
    Porada, S.
    Biesheuvel, P. M.
    van der Wal, A.
    Dykstra, J. E.
    ELECTROCHIMICA ACTA, 2018, 270 : 165 - 173