ON HYPERPLANES AND SEMISPACES IN MAX-MIN CONVEX GEOMETRY

被引:0
|
作者
Nitica, Viorel [1 ,2 ]
Sergeev, Sergei [3 ]
机构
[1] W Chester Univ, Dept Math, Chester, PA 19383 USA
[2] Inst Math, Bucharest, Romania
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
tropical convexity; fuzzy algebra; separation; SETS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to "classically" separate by hyperplanes in max-min convex geometry.
引用
收藏
页码:548 / 557
页数:10
相关论文
共 50 条
  • [41] Optimization of fuzzy relational equations with a linear convex combination of max-min and max-average compositions
    Wu, Yan-Kuen
    Yang, Wen-Wei
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2007, : 832 - 836
  • [42] A max-min ant system algorithm with εMAX selection
    Ogawa, Masato
    Li, Lei
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (04): : 467 - 471
  • [43] SOME RESULTS ON MAX-MIN PURSUIT
    FLYNN, J
    [J]. SIAM JOURNAL ON CONTROL, 1974, 12 (01): : 53 - 69
  • [44] Online Max-min Fair Allocation
    Kawase, Yasushi
    Sumita, Hanna
    [J]. ALGORITHMIC GAME THEORY, SAGT 2022, 2022, 13584 : 526 - 543
  • [45] Max-min fair survivable networks
    Bashllari, A.
    Nace, D.
    Gourdin, E.
    Klopfenstein, O.
    [J]. ANNALS OF TELECOMMUNICATIONS, 2008, 63 (9-10) : 511 - 522
  • [46] Convergence of max-min consensus algorithms
    Shi, Guodong
    Xia, Weiguo
    Johansson, Karl Henrik
    [J]. AUTOMATICA, 2015, 62 : 11 - 17
  • [47] Hankel max-min matrices and their applications
    Tomaskova, Hana
    Gavalec, Martin
    [J]. PROCEEDINGS OF 30TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS, PTS I AND II, 2012, : 909 - 914
  • [48] EIGENSPACE OF A CIRCULANT MAX-MIN MATRIX
    Gavalec, Martin
    Tomaskova, Hana
    [J]. KYBERNETIKA, 2010, 46 (03) : 397 - 404
  • [49] ON THE RESOLUTION OF BIPOLAR MAX-MIN EQUATIONS
    Li, Pingke
    Jin, Qingwei
    [J]. KYBERNETIKA, 2016, 52 (04) : 514 - 530
  • [50] A Max-Min Principle for Phyllotactic Patterns
    Ching, Wai-Ki
    Cong, Yang
    Tsing, Nam-Kiu
    [J]. COMPLEX SCIENCES, PT 2, 2009, 5 : 1329 - 1336