Semi-supervised class-specific feature selection for VHR remote sensing images

被引:2
|
作者
Chen, Xi [1 ,2 ]
Zhou, Gongjian [3 ]
Qi, Honggang [4 ]
Shao, Guofan [2 ]
Gu, Yanfeng [1 ]
机构
[1] Harbin Inst Technol, Dept Informat Engn, Harbin 150006, Peoples R China
[2] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
[3] Harbin Inst Technol, Dept Elect Engn, Harbin 150006, Peoples R China
[4] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMISUPERVISED FEATURE-SELECTION; CLASSIFICATION; INFORMATION;
D O I
10.1080/2150704X.2016.1171923
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Features relevant to a thematic class, that is, class-specific features are beneficial to thematic information extraction. However, existing class-specific feature selection methods require abundant labelled samples, while sample labelling is always labour intensive and time consuming. Therefore, it is necessary to select class-specific features with insufficient labelled objects. In this paper, we raise this problem as semi-supervised class-specific feature selection and propose a new two-stage method. First, a weight matrix fully integrates local geometrical structure and discriminative information. Second, the weight matrix is incorporated into a l(2); 1-norm minimization optimization problem of data reconstruction to objectively measure the effectiveness of features for a thematic class. Different from the explicit binarization in the label vector, the new method only implicitly employs binarization in the weight matrix. With area under receiver-operating characteristic curve, class-specific features result in an increase from 3% and 4% on average for Bayes and linear support vector machine, respectively.
引用
收藏
页码:601 / 610
页数:10
相关论文
共 50 条
  • [31] Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images
    Wang, Jia-Xin
    Li, Teng
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    Wilson, Richard C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Semi-Supervised Semantic Segmentation of Remote Sensing Images With Iterative Contrastive Network
    Wang, Jia-Xin
    Chen, Si-Bao
    Ding, Chris H. Q.
    Tang, Jin
    Luo, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] SemiPSENet: A Novel Semi-Supervised Change Detection Network for Remote Sensing Images
    Hu, Lei
    Li, Supeng
    Ruan, Jiachen
    Gao, Feng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [34] Co-training with Clustering for the Semi-supervised Classification of Remote Sensing Images
    Aydav, Prem Shankar Singh
    Minz, Sonjharia
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 2, 2016, 380 : 659 - 667
  • [35] A Bias Correction Semi-Supervised Semantic Segmentation Framework for Remote Sensing Images
    Zhang, Li
    Tan, Zhenshan
    Zheng, Yuzhi
    Zhang, Guo
    Zhang, Wen
    Li, Zhijiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [36] A Survey on semi-supervised feature selection methods
    Sheikhpour, Razieh
    Sarram, Mehdi Agha
    Gharaghani, Sajjad
    Chahooki, Mohammad Ali Zare
    PATTERN RECOGNITION, 2017, 64 : 141 - 158
  • [37] Semi-supervised relevance index for feature selection
    Frederico Coelho
    Cristiano Castro
    Antônio P. Braga
    Michel Verleysen
    Neural Computing and Applications, 2019, 31 : 989 - 997
  • [38] Simple strategies for semi-supervised feature selection
    Konstantinos Sechidis
    Gavin Brown
    Machine Learning, 2018, 107 : 357 - 395
  • [39] Semi-supervised Feature Selection for Gender Classification
    Wu, Jing
    Smith, William A. P.
    Hancock, Edwin R.
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 23 - 33
  • [40] Semi-supervised relevance index for feature selection
    Coelho, Frederico
    Castro, Cristiano
    Braga, Antonio P.
    Verleysen, Michel
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (Suppl 2): : 989 - 997