Optimal v-SVM Parameter Estimation using Multi Objective Evolutionary Algorithms

被引:0
|
作者
Ethridge, James [1 ,2 ]
Ditzler, Gregory [1 ,2 ]
Polikar, Robi [1 ,2 ]
机构
[1] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[2] Signal Proc & Pattern Recognit Lab, Glassboro, NJ 08028 USA
基金
美国国家科学基金会;
关键词
multi-objective optimization; v-SVM; evolutionary algorithms; MACHINE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using a machine learning algorithm for a given application often requires tuning design parameters of the classifier to obtain optimal classification performance without overfitting. In this contribution, we present an evolutionary algorithm based approach for multi-objective optimization of the sensitivity and specificity of a v-SVM. The v-SVM is often preferred over the standard C-SVM due to smaller dynamic range of the v parameter compared to the unlimited dynamic range of the C parameter. Instead of looking for a single optimization result, we look for a set of optimal solutions that lie along the Pareto optimality front. The traditional advantage of using the Pareto optimality is of course the flexibility to choose any of the solutions that lies on the Pareto optimality front. However, we show that simply maximizing sensitivity and specificity over the Pareto front leads to parameters that appear to be mathematically optimal yet still cause overfitting. We propose a multiple objective optimization approach with three objective functions to find additional parameter values that do not cause overfitting.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An optimal SVM with feature selection using multi-objective PSO
    Behravan, Iman
    Zahiri, Seyed Hamid
    Dehghantanha, Oveis
    [J]. 2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 76 - 81
  • [32] Fixed Parameter Multi-Objective Evolutionary Algorithms for the W-Separator Problem
    Baguley, Samuel
    Friedrich, Tobias
    Neumann, Aneta
    Neumann, Frank
    Pappik, Marcus
    Zeif, Ziena
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 1537 - 1545
  • [33] Decentralized optimum power flow using evolutionary multi-objective evolutionary algorithms
    De Andrade Amorim, Elizete
    Romero, Rubén
    Mantovani, José R. S.
    [J]. Controle y Automacao, 2009, 20 (02): : 217 - 232
  • [34] Estimation of the Smoothing Parameter in Probabilistic Neural Network Using Evolutionary Algorithms
    Naik, Shraddha M.
    Jagannath, Ravi Prasad K.
    Kuppili, Venkatanareshbabu
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (04) : 2945 - 2955
  • [35] Estimation of the Smoothing Parameter in Probabilistic Neural Network Using Evolutionary Algorithms
    Shraddha M. Naik
    Ravi Prasad K. Jagannath
    Venkatanareshbabu Kuppili
    [J]. Arabian Journal for Science and Engineering, 2020, 45 : 2945 - 2955
  • [36] Evolutionary Algorithms for Parameter Estimation of Metabolic Systems
    Lebedik, Anastasia Slustikova
    Zelinka, Ivan
    [J]. Advances in Intelligent Systems and Computing, 2013, 210 : 201 - 209
  • [37] Application of Evolutionary Algorithms in Guaranteed Parameter Estimation
    Goerke, Thilo
    Engell, Sebastian
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 5100 - 5105
  • [38] An intelligent pre-estimation method of design time for complex products based on v-SVM
    Zheng, Yujie
    Li, Meiyan
    [J]. KYBERNETES, 2021, 50 (01) : 1 - 21
  • [39] Multi-objective tag SNPs selection using evolutionary algorithms
    Ting, Chuan-Kang
    Lin, Wei-Ting
    Huang, Yao-Ting
    [J]. BIOINFORMATICS, 2010, 26 (11) : 1446 - 1452
  • [40] Multi-objective optimization in evolutionary algorithms using satisfiability classes
    Drechsler, N
    Drechsler, R
    Becker, B
    [J]. COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1999, 1625 : 108 - 117