Optimal v-SVM Parameter Estimation using Multi Objective Evolutionary Algorithms

被引:0
|
作者
Ethridge, James [1 ,2 ]
Ditzler, Gregory [1 ,2 ]
Polikar, Robi [1 ,2 ]
机构
[1] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[2] Signal Proc & Pattern Recognit Lab, Glassboro, NJ 08028 USA
基金
美国国家科学基金会;
关键词
multi-objective optimization; v-SVM; evolutionary algorithms; MACHINE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using a machine learning algorithm for a given application often requires tuning design parameters of the classifier to obtain optimal classification performance without overfitting. In this contribution, we present an evolutionary algorithm based approach for multi-objective optimization of the sensitivity and specificity of a v-SVM. The v-SVM is often preferred over the standard C-SVM due to smaller dynamic range of the v parameter compared to the unlimited dynamic range of the C parameter. Instead of looking for a single optimization result, we look for a set of optimal solutions that lie along the Pareto optimality front. The traditional advantage of using the Pareto optimality is of course the flexibility to choose any of the solutions that lies on the Pareto optimality front. However, we show that simply maximizing sensitivity and specificity over the Pareto front leads to parameters that appear to be mathematically optimal yet still cause overfitting. We propose a multiple objective optimization approach with three objective functions to find additional parameter values that do not cause overfitting.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Sentiment Classification in the Financial Domain using v-SVM and Multi-Objective Optimisation
    Sun, Fan
    Belatreche, Ammar
    Coleman, Sonya
    McGinnity, T. M.
    Li, Yuhua
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 910 - 916
  • [2] Analysis of Evolutionary Algorithms using Multi-Objective Parameter Tuning
    Ugolotti, Roberto
    Cagnoni, Stefano
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 1343 - 1350
  • [3] Robust adaptive control and parameter estimation using multi objective evolutionary algorithm
    Alighanbari, M
    Homaifar, A
    Sayarrodsari, B
    [J]. INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 1326 - 1333
  • [4] Fundamental matrix estimation using evolutionary algorithms with multi-objective functions
    Tang, Cheng-Yuan
    Wu, Yi-Leh
    Lai, Yuei-Hung
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2008, 24 (03) : 785 - 800
  • [5] Solving the Parameter Setting in Multi-Objective Evolutionary Algorithms Using Grid::Cluster
    Segredo, Eduardo
    Rodriguez, Casiano
    Leon, Coromoto
    [J]. DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2010, 79 : 489 - 496
  • [6] PARAMETER OPTIMIZATION OF MULTI OBJECTIVE ROBUST PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER WITH FILTER USING MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS
    Muniraj, Rathinam
    Iruthayarajan, Mariasiluvairaj Willjuice
    Arun, Ramaveerapathiran
    Sivakumar, Thanga Swamy
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2019, 64 (03): : 259 - 265
  • [7] Calculation of Optimal Fuzzy Equivalent Matrix Using Multi-Objective Evolutionary Algorithms
    Zhang, Huan
    Zhang, Hong-wei
    Qiao, Shao-jie
    [J]. EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8, 2010, : 5173 - +
  • [8] Multi-objective Parameter Optimization of a Series Hybrid Electric Vehicle Using Evolutionary Algorithms
    Zhang, Bingzhan
    Chen, Zhihang
    Mi, Chris
    Murphey, Yi L.
    [J]. 2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 2009, : 819 - 823
  • [9] Robustness using Multi-Objective Evolutionary Algorithms
    Gaspar-Cunha, A.
    Covas, J. A.
    [J]. APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 353 - +
  • [10] Parallelization of multi-objective evolutionary algorithms using clustering algorithms
    Streichert, F
    Ulmer, H
    Zell, A
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 92 - 107