Influences of secondary gas injection pattern on fluidized bed combustion process: A CFD-DEM study

被引:26
|
作者
Hu, Chenshu [1 ]
Luo, Kun [1 ]
Zhou, Mengmeng [2 ]
Lin, Junjie [1 ]
Kong, Dali [1 ]
Fan, Jianren [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Monash Univ, Dept Chem Engn, ARC Res Hub Computat Particle Technol, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Bubbling fluidized bed; Secondary gas injection; CFD-DEM; Coal combustion; Hot spot; SCALE-UP; SIMULATION; PARTICLES; MODEL; FLOW; CHAR; COAL; VALIDATION; PARAMETERS; RISER;
D O I
10.1016/j.fuel.2020.117314
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Computational fluid dynamics coupled with the discrete element method (CFD-DEM) is applied to study coal combustion in a lab-scale bubbling fluidized bed. The predictions in terms of outlet gas compositions and temperature profiles are compared with the experimental measurements in the literature, and a reasonable agreement is achieved. The temporal and spatial properties of the coal combustion process are then investigated from the particle level, and the influences of the secondary gas injection parameters, including the secondary gas ratio, the jetting velocity, and the injection height are demonstrated. The results indicate that each coal particle has different entrainment behaviors, heating process, and chemical reactions, and the secondary gas injection pattern significantly influences the mixing between the oxygen and coal particles. The increase of the secondary gas ratio enhances the gas temperature fluctuation, resulting in severe hot spots which are undesirable in fluidized bed combustors. The typical formation process of a hot spot is further captured and analyzed. It is revealed that the hot spot is mainly caused by the violent combustion of volatile gas in the gas bubbles. These results provide valuable insights regarding the influence of the secondary gas injection and the bubbles on chemical reactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A detailed gas-solid fluidized bed comparison study on CFD-DEM coarse-graining techniques
    de Munck, M. J. A.
    van Gelder, J. B.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2023, 269
  • [32] CFD-DEM Simulation Study on Heat and Mass Transfer of Wheat Particles in Gas-Solid Fluidized Bed
    Yang, Kaimin
    Li, Xin
    Wang, Yuancheng
    Du, Xinming
    JOURNAL OF FOOD PROCESS ENGINEERING, 2025, 48 (01)
  • [33] CFD-DEM study of spout deflection behavior of cohesive particles in a spout fluidized bed
    Luo, Zhan
    Yue, Yuanhe
    Wang, Shuai
    Shen, Yansong
    POWDER TECHNOLOGY, 2023, 427
  • [34] Application of CFD-DEM to the study of solid exchange in a dual-leg fluidized bed
    Chunzhen Yang
    Yufeng Duan
    Haitao Hu
    Particuology, 2013, 11 (06) : 636 - 646
  • [35] CFD-DEM Modeling of O2/CO2 Char Combustion in a Fluidized Bed
    Zhuang, Yaming
    Chen, Xiaoping
    Liu, Daoyin
    Bu, Changsheng
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 287 - 293
  • [36] CFD-DEM Study of heat and mass transfer of ellipsoidal particles in fluidized bed dryers
    Handayani, Sri Utami
    Wahyudi, Hadi
    Agustina, Sri
    Yulianto, Mohamad Endy
    Aryanto, Hermawan Dwi
    POWDER TECHNOLOGY, 2023, 425
  • [37] CFD-DEM study of mixing and dispersion behaviors of solid phase in a bubbling fluidized bed
    Luo, Kun
    Wu, Fan
    Yang, Shiliang
    Fan, Jianren
    POWDER TECHNOLOGY, 2015, 274 : 482 - 493
  • [38] CFD-DEM Simulation of the Fluidized-bed Granulation of Food Powders
    Kim, Ju-Eun
    Chung, Young Mi
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2019, 24 (01) : 191 - 205
  • [39] Application of CFD-DEM to the study of solid exchange in a dual-leg fluidized bed
    Yang, Chunzhen
    Duan, Yufeng
    Hu, Haitao
    PARTICUOLOGY, 2013, 11 (06) : 636 - 646
  • [40] A CFD-DEM study of bubble dynamics in fluidized bed using flood fill method
    Lu, Youjun
    Huang, Jikai
    Zheng, Pengfei
    CHEMICAL ENGINEERING JOURNAL, 2015, 274 : 123 - 131