Influences of secondary gas injection pattern on fluidized bed combustion process: A CFD-DEM study

被引:26
|
作者
Hu, Chenshu [1 ]
Luo, Kun [1 ]
Zhou, Mengmeng [2 ]
Lin, Junjie [1 ]
Kong, Dali [1 ]
Fan, Jianren [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Monash Univ, Dept Chem Engn, ARC Res Hub Computat Particle Technol, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Bubbling fluidized bed; Secondary gas injection; CFD-DEM; Coal combustion; Hot spot; SCALE-UP; SIMULATION; PARTICLES; MODEL; FLOW; CHAR; COAL; VALIDATION; PARAMETERS; RISER;
D O I
10.1016/j.fuel.2020.117314
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Computational fluid dynamics coupled with the discrete element method (CFD-DEM) is applied to study coal combustion in a lab-scale bubbling fluidized bed. The predictions in terms of outlet gas compositions and temperature profiles are compared with the experimental measurements in the literature, and a reasonable agreement is achieved. The temporal and spatial properties of the coal combustion process are then investigated from the particle level, and the influences of the secondary gas injection parameters, including the secondary gas ratio, the jetting velocity, and the injection height are demonstrated. The results indicate that each coal particle has different entrainment behaviors, heating process, and chemical reactions, and the secondary gas injection pattern significantly influences the mixing between the oxygen and coal particles. The increase of the secondary gas ratio enhances the gas temperature fluctuation, resulting in severe hot spots which are undesirable in fluidized bed combustors. The typical formation process of a hot spot is further captured and analyzed. It is revealed that the hot spot is mainly caused by the violent combustion of volatile gas in the gas bubbles. These results provide valuable insights regarding the influence of the secondary gas injection and the bubbles on chemical reactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Study on the char combustion in a fluidized bed by CFD-DEM simulations: Influences of fuel properties
    Xie, Jun
    Zhong, Wenqi
    Shao, Yingjuan
    POWDER TECHNOLOGY, 2021, 394 : 20 - 34
  • [2] CFD-DEM and experimental study of bubbling in a fluidized bed
    Khawaja, Hassan A.
    Journal of Computational Multiphase Flows, 2015, 7 (04): : 227 - 240
  • [3] CFD-DEM modeling of oxy-char combustion in a fluidized bed
    Lian, Guoqing
    Zhong, Wenqi
    POWDER TECHNOLOGY, 2022, 407
  • [4] Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study
    Hu, Chenshu
    Luo, Kun
    Wang, Shuai
    Sun, Liyan
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2019, 195 : 693 - 706
  • [5] CFD-DEM simulations of a fluidized bed crystallizer
    Kerst, Kristin
    Roloff, Christoph
    de Souza, Luis G. Medeiros
    Bartz, Antje
    Seidel-Morgenstern, Andreas
    Thevenin, Dominique
    Janiga, Gabor
    CHEMICAL ENGINEERING SCIENCE, 2017, 165 : 1 - 13
  • [6] CFD-DEM Simulation of a Coating Process in a Fluidized Bed Rotor Granulator
    Grohn, Philipp
    Lawall, Marius
    Oesau, Tobias
    Heinrich, Stefan
    Antonyuk, Sergiy
    PROCESSES, 2020, 8 (09)
  • [7] 3D CFD-DEM Simulation of Char Combustion in a Fluidized Bed
    Xie, Jun
    Zhong, Wen-Qi
    Shao, Ying-Juan
    Li, Kai-Xi
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2019, 40 (06): : 1307 - 1312
  • [8] CFD-DEM simulation of tube erosion in a fluidized bed
    Zhao, Yongzhi
    Xu, Lei
    Zheng, Jinyang
    AICHE JOURNAL, 2017, 63 (02) : 418 - 437
  • [9] Investigating the bubble dynamics in fluidized bed by CFD-DEM
    Mostafaei, Fatemeh
    Golshan, Shahab
    Zarghami, Reza
    Gharebagh, Rahmat Sotudeh
    Mostoufi, Navid
    POWDER TECHNOLOGY, 2020, 366 (366) : 938 - 948
  • [10] CFD-DEM simulation of a fluidized bed crystallization reactor
    Kerst, Kristin
    de Souza, Luis Medeiros
    Bartz, Antje
    Seidel-Morgenstern, Andreas
    Janiga, Gabor
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2015, 37 : 263 - 268