Bootstrap-based Budget Allocation for Nested Simulation

被引:10
|
作者
Zhang, Kun [1 ]
Liu, Guangwu [2 ]
Wang, Shiyu [2 ]
机构
[1] Renmin Univ China, Inst Stat & Big Data, Beijing 100872, Peoples R China
[2] City Univ Hong Kong, Dept Management Sci, Coll Business, Kowloon, Hong Kong, Peoples R China
关键词
nested simulation; budget allocation; bootstrap sampling; confidence intervals; RISK-ESTIMATION;
D O I
10.1287/opre.2020.2071
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Simulation budget allocation is at the heart of a nested (also referred to as two level) simulation approach to estimating functionals of a conditional expectation. In this paper, we propose a sample-driven budget allocation rule under a unified nested simulation framework that allows for different forms of functionals. The proposed method employs bootstrap sampling to guide an effective choice of outer-and inner-level sample sizes. Furthermore, we establish a central limit theorem for nested simulation estimators, and incorporate the sample-driven allocation rule into the construction of asymptotically valid confidence intervals (CIs). Effectiveness of the sample-driven allocation rule and validity of the constructed CIs are confirmed by numerical experiments.
引用
收藏
页码:1128 / 1142
页数:16
相关论文
共 50 条
  • [31] Bootstrap-Based Hypothesis Test for Detecting Sustained Oscillations
    Ghorbaniparvar, M.
    Zhou, N.
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [32] Bootstrap-Based Quality Scores for NGS Variant Calling
    Sarkozy, P.
    Jobbagy, A.
    Antal, P.
    [J]. FIRST EUROPEAN BIOMEDICAL ENGINEERING CONFERENCE FOR YOUNG INVESTIGATORS, 2015, 50 : 44 - 47
  • [33] Bootstrap-based maximum multivariate CUSUM control chart
    Khusna, Hidayatul
    Mashuri, Muhammad
    Ahsan, Muhammad
    Suhartono, Suhartono
    Prastyo, Dedy Dwi
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2020, 17 (01): : 52 - 74
  • [34] A bootstrap-based test for establishing noninferiority in clinical trials
    Chen, Michael
    Kianifard, Farid
    Dhar, Sunil K.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2006, 16 (03) : 357 - 363
  • [35] Bootstrap-based tolerance intervals for application to method validation
    Rebafka, Tabea
    Clemencon, Stphan
    Feinberg, Max
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 89 (02) : 69 - 81
  • [36] Bootstrap-based model selection criteria for beta regressions
    Bayer, Fabio M.
    Cribari-Neto, Francisco
    [J]. TEST, 2015, 24 (04) : 776 - 795
  • [37] BOOTSTRAP-BASED SVM AGGREGATION FOR CLASS IMBALANCE PROBLEMS
    Sukhanov, S.
    Merentitis, A.
    Debes, C.
    Hahn, J.
    Zoubir, A. M.
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 165 - 169
  • [38] Bootstrap-based Support of HGT Inferred by Maximum Parsimony
    Hyun Jung Park
    Guohua Jin
    Luay Nakhleh
    [J]. BMC Evolutionary Biology, 10
  • [39] Estimating the variance of a combined forecast: Bootstrap-based approach
    Hounyo, Ulrich
    Lahiri, Kajal
    [J]. JOURNAL OF ECONOMETRICS, 2023, 232 (02) : 445 - 468
  • [40] A bootstrap-based non-parametric forecast density
    Manzan, Sebastiano
    Zerom, Dawit
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2008, 24 (03) : 535 - 550