Area Operator in Loop Quantum Gravity

被引:3
|
作者
Lim, Adrian P. C. [1 ]
机构
[1] Singapore Inst Technol, Singapore, Singapore
来源
ANNALES HENRI POINCARE | 2017年 / 18卷 / 11期
关键词
D O I
10.1007/s00023-017-0600-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hyperlink is a finite set of non-intersecting simple closed curves in . Let S be an orientable surface in . The dynamical variables in general relativity are the vierbein e and a -valued connection . Together with Minkowski metric, e will define a metric g on the manifold. Denote as the area of S, for a given choice of e. The Einstein-Hilbert action is defined on e and . We will quantize the area of the surface S by integrating against a holonomy operator of a hyperlink L, disjoint from S, and the exponential of the Einstein-Hilbert action, over the space of vierbeins e and -valued connections . Using our earlier work done on Chern-Simons path integrals in , we will write this infinite dimensional path integral as the limit of a sequence of Chern-Simons integrals. Our main result shows that the area operator can be computed from a link-surface diagram between L and S. By assigning an irreducible representation of to each component of L, the area operator gives the total net momentum impact on the surface S.
引用
下载
收藏
页码:3719 / 3735
页数:17
相关论文
共 50 条
  • [31] Properties of the volume operator in loop quantum gravity: II. Detailed presentation
    Brunnemann, Johannes
    Rideout, David
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (06)
  • [32] Loop quantum gravity
    Rovelli C.
    Living Reviews in Relativity, 1998, 1 (1)
  • [33] Loop quantum gravity
    Rovelli, C
    PHYSICS WORLD, 2003, 16 (11) : 37 - 41
  • [34] Loop Quantum Gravity
    Baez, John
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 555 - 555
  • [35] Loop quantum gravity
    Thiemann, Thomas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (08): : 1113 - 1129
  • [36] Loop quantum gravity
    Rovelli, Carlo
    ALBERT EINSTEIN CENTURY INTERNATIONAL CONFERENCE, 2006, 861 : 15 - 31
  • [37] Loop Quantum Gravity
    Piguet, O.
    ASTRONOMISCHE NACHRICHTEN, 2014, 335 (6-7) : 721 - 726
  • [38] Loop quantum gravity
    Chiou, Dah-Wei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (01):
  • [39] Loop Quantum Gravity
    Carlo Rovelli
    Living Reviews in Relativity, 2008, 11
  • [40] Loop Quantum Gravity
    Rovelli, Carlo
    LIVING REVIEWS IN RELATIVITY, 2008, 11 (1)