Area Operator in Loop Quantum Gravity

被引:3
|
作者
Lim, Adrian P. C. [1 ]
机构
[1] Singapore Inst Technol, Singapore, Singapore
来源
ANNALES HENRI POINCARE | 2017年 / 18卷 / 11期
关键词
D O I
10.1007/s00023-017-0600-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hyperlink is a finite set of non-intersecting simple closed curves in . Let S be an orientable surface in . The dynamical variables in general relativity are the vierbein e and a -valued connection . Together with Minkowski metric, e will define a metric g on the manifold. Denote as the area of S, for a given choice of e. The Einstein-Hilbert action is defined on e and . We will quantize the area of the surface S by integrating against a holonomy operator of a hyperlink L, disjoint from S, and the exponential of the Einstein-Hilbert action, over the space of vierbeins e and -valued connections . Using our earlier work done on Chern-Simons path integrals in , we will write this infinite dimensional path integral as the limit of a sequence of Chern-Simons integrals. Our main result shows that the area operator can be computed from a link-surface diagram between L and S. By assigning an irreducible representation of to each component of L, the area operator gives the total net momentum impact on the surface S.
引用
下载
收藏
页码:3719 / 3735
页数:17
相关论文
共 50 条
  • [1] Area Operator in Loop Quantum Gravity
    Adrian P. C. Lim
    Annales Henri Poincaré, 2017, 18 : 3719 - 3735
  • [2] On the distribution of the eigenvalues of the area operator in loop quantum gravity
    Barbero G, J. Fernando
    Margalef-Bentabol, Juan
    Villasenor, Eduardo J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (06)
  • [3] The length operator in Loop Quantum Gravity
    Bianchi, Eugenio
    NUCLEAR PHYSICS B, 2009, 807 (03) : 591 - 624
  • [4] Operator calculations in loop quantum gravity
    Borissov, R
    NUCLEAR PHYSICS B, 1997, : 237 - 240
  • [5] Curvature operator for loop quantum gravity
    Alesci, E.
    Assanioussi, M.
    Lewandowski, J.
    PHYSICAL REVIEW D, 2014, 89 (12)
  • [6] The diffeomorphism constraint operator in loop quantum gravity
    Varadarajan, M.
    LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360
  • [7] Eigenvalues of the volume operator in loop quantum gravity
    Meissner, KA
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (03) : 617 - 625
  • [8] New length operator for loop quantum gravity
    Ma, Yongge
    Soo, Chopin
    Yang, Jinsong
    PHYSICAL REVIEW D, 2010, 81 (12)
  • [9] The diffeomorphism constraint operator in loop quantum gravity
    Laddha, Alok
    Varadarajan, Madhavan
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (19)
  • [10] Entropy and area in loop quantum gravity
    Swain, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (12): : 2301 - 2305