Shape optimization for dynamic contact problems with friction

被引:0
|
作者
Myslinski, A [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
来源
关键词
dynamic unilateral problem; shape optimization; sensitivity analysis; necessary optimality condition;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and necessary optimality condition is formulated.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [31] SHAPE DERIVATIVES FOR THE PENALTY FORMULATION OF ELASTIC CONTACT PROBLEMS WITH TRESCA FRICTION
    Chaudet-Dumas, Bastien
    Deteix, Jean
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (06) : 3237 - 3261
  • [32] Parametric quadratic programming method for dynamic contact problems with friction
    Sun, S. M.
    Tzou, H. S.
    Natori, M. C.
    AIAA Journal, 1994, 32 (02): : 371 - 378
  • [33] ON DYNAMIC PROBLEMS ON THEORY OF CRACKS WITH CONTACT, FRICTION AND SLIDING DOMAINS
    ZOZULYA, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (01): : 46 - 49
  • [34] Parametric quadratic programming method for dynamic contact problems with friction
    Sun, S.M.
    Tzou, H.S.
    Natori, M.C.
    1600, (32):
  • [35] SHAPE OPTIMIZATION IN CONTACT PROBLEMS WITH DESIRED CONTACT TRACTION DISTRIBUTION ON THE SPECIFIED CONTACT SURFACE
    CHEN, WH
    OU, CR
    COMPUTATIONAL MECHANICS, 1995, 15 (06) : 534 - 545
  • [36] Meshless shape design sensitivity analysis and optimization for contact problem with friction
    Kim, NH
    Choi, KK
    Chen, JS
    Park, YH
    COMPUTATIONAL MECHANICS, 2000, 25 (2-3) : 157 - 168
  • [37] Meshless shape design sensitivity analysis and optimization for contact problem with friction
    N. H. Kim
    K. K. Choi
    J. S. Chen
    Y. H. Park
    Computational Mechanics, 2000, 25 : 157 - 168
  • [38] A gradient-less shape optimization for elastic contact problems
    Shuai, Tian
    Xu, Yazhou
    Wu, Zhixue
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 2526 - 2530
  • [39] SHAPE OPTIMIZATION OF CONTACT PROBLEMS USING MIXED VARIATIONAL FORMULATION
    MYSLINSKI, A
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 180 : 414 - 423
  • [40] Level Set Method for Shape and Topology Optimization of Contact Problems
    Myslinski, Andrzej
    SYSTEM MODELING AND OPTIMIZATION, 2009, 312 : 397 - 410