Genome-Wide Association Studies of Root-Related Traits in Brassica napus L. under Low-Potassium Conditions

被引:3
|
作者
Ibrahim, Sani [1 ,2 ]
Ahmad, Nazir [1 ]
Kuang, Lieqiong [1 ]
Tian, Ze [1 ]
Sadau, Salisu Bello [3 ]
Iqbal, Muhammad Shahid [3 ]
Wang, Xinfa [1 ]
Wang, Hanzhong [1 ]
Dun, Xiaoling [1 ]
机构
[1] Chinese Acad Agr Sci, Oil Crops Res Inst, Key Lab Biol & Genet Improvement Oil Crops, Minist Agr & Rural Affairs, Wuhan 430062, Peoples R China
[2] Bayero Univ, Coll Phys & Pharmaceut Sci, Fac Life Sci, Dept Plant Biol, PMB 3011, Kano 700006, Nigeria
[3] Chinese Acad Agr Sci ICR CAAS, Inst Cotton Res, State Key Lab Cotton Biol, Anyang 455000, Peoples R China
来源
PLANTS-BASEL | 2022年 / 11卷 / 14期
基金
中国国家自然科学基金;
关键词
rapeseed; ML-GWAS; root-related traits; candidate gene; QTN; EXPRESSION ANALYSIS; SYSTEM; ARABIDOPSIS; POPULATION; TOLERANCE; WHEAT; PREDICTION; RESISTANCE; NUTRITION; INCREASE;
D O I
10.3390/plants11141826
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Roots are essential organs for a plant's ability to absorb water and obtain mineral nutrients, hence they are critical to its development. Plants use root architectural alterations to improve their chances of absorbing nutrients when their supply is low. Nine root traits of a Brassica napus association panel were explored in hydroponic-system studies under low potassium (K) stress to unravel the genetic basis of root growth in rapeseed. The quantitative trait loci (QTL) and candidate genes for root development were discovered using a multilocus genome-wide association study (ML-GWAS). For the nine traits, a total of 453 significant associated single-nucleotide polymorphism (SNP) loci were discovered, which were then integrated into 206 QTL clusters. There were 45 pleiotropic clusters, and qRTA04-4 and qRTC04-7 were linked to TRL, TSA, and TRV at the same time, contributing 5.25-11.48% of the phenotypic variance explained (PVE) to the root traits. Additionally, 1360 annotated genes were discovered by examining genomic regions within 100 kb upstream and downstream of lead SNPs within the 45 loci. Thirty-five genes were identified as possibly regulating root-system development. As per protein-protein interaction analyses, homologs of three genes (BnaC08g29120D, BnaA07g10150D, and BnaC04g45700D) have been shown to influence root growth in earlier investigations. The QTL clusters and candidate genes identified in this work will help us better understand the genetics of root growth traits and could be employed in marker-assisted breeding for rapeseed adaptable to various conditions with low K levels.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.)
    Wan, Heping
    Chen, Lunlin
    Guo, Jianbin
    Li, Qun
    Wen, Jing
    Yi, Bin
    Ma, Chaozhi
    Tu, Jinxing
    Fu, Tingdong
    Shen, Jinxiong
    [J]. FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [22] Genome-wide association study for electrolyte leakage in rapeseed/canola (Brassica napus L.)
    Fiebelkorn, Danielle
    Horvath, David
    Rahman, Mukhlesur
    [J]. MOLECULAR BREEDING, 2018, 38 (11)
  • [23] Genome-Wide Association Mapping of Freezing Tolerance Loci in Canola (Brassica napus L.)
    Chao, Wun S.
    Horvath, David P.
    Stamm, Michael J.
    Anderson, James V.
    [J]. AGRONOMY-BASEL, 2021, 11 (02):
  • [24] Genome-wide association study for electrolyte leakage in rapeseed/canola (Brassica napus L.)
    Danielle Fiebelkorn
    David Horvath
    Mukhlesur Rahman
    [J]. Molecular Breeding, 2018, 38
  • [25] Genome-Wide Association Studies of Seven Root Traits in Soybean (Glycine max L.) Landraces
    Kim, Seong-Hoon
    Tayade, Rupesh
    Kang, Byeong-Hee
    Hahn, Bum-Soo
    Ha, Bo-Keun
    Kim, Yoon-Ha
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [26] Exploring the Genetic Architecture of Root-Related Traits in Mediterranean Bread Wheat Landraces by Genome-Wide Association Analysis
    Rufo, Ruben
    Salvi, Silvio
    Royo, Conxita
    Soriano, Jose Miguel
    [J]. AGRONOMY-BASEL, 2020, 10 (05):
  • [27] Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.)
    Liu, Jia
    Wang, Wenxiang
    Mei, Desheng
    Wang, Hui
    Fu, Li
    Liu, Daoming
    Li, Yunchang
    Hui, Qiong
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [28] Genome-Wide Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed (Brassica napus L.)
    Chen, Lunlin
    Wan, Heping
    Qian, Jiali
    Guo, Jianbin
    Sun, Chengming
    Wen, Jing
    Yi, Bin
    Ma, Chaozhi
    Tu, Jinxing
    Song, Laiqiang
    Fu, Tingdong
    Shen, Jinxiong
    [J]. FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [29] Genome-wide association studies of root system architecture traits in a broad collection of Brassica genotypes
    Yang, Chunxiao
    Fredua-Agyeman, Rudolph
    Hwang, Sheau-Fang
    Gorim, Linda Y.
    Strelkov, Stephen E.
    [J]. FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [30] Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L.
    Yan, Guixin
    Zhang, Meili
    Guan, Wenjie
    Zhang, Fugui
    Dai, Wenjun
    Yuan, Lili
    Gao, Guizhen
    Xu, Kun
    Chen, Biyun
    Li, Lixia
    Wu, Xiaoming
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)