Improving the prediction of cardiovascular risk with machine-learning and DNA methylation data

被引:1
|
作者
Cugliari, Giovanni [1 ]
Benevenuta, Silvia [1 ]
Guarrera, Simonetta [1 ]
Sacerdote, Carlotta [2 ]
Panico, Salvatore [3 ]
Krogh, Vittorio [4 ]
Tumino, Rosario [5 ]
Vineis, Paolo [6 ]
Fariselli, Piero [1 ]
Matullo, Giuseppe [1 ]
机构
[1] Univ Turin, Dept Med Sci, Turin, Italy
[2] Piedmont Reference Ctr Epidemiol & Canc Prevent, Turin, Italy
[3] Federico II Univ Naples, Dept Clin Med & Surg, Naples, Italy
[4] IRCCS Ist Nazl Tumori, Epidemiol & Prevent Unit, Milan, Italy
[5] Dept Canc Registry & Histopathol, Ragusa, Italy
[6] Sch Publ Hlth, Dept Epidemiol & Biostat, London, England
关键词
Epigenetic biomarkers; DNA methylation; Genomics; Computational statistics;
D O I
10.1109/cibcb.2019.8791483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classically, the cardiovascular risk of individual is evaluated using phenomenological variables (PV) such as blood pressure, body mass, smoker status, gender, age etc. Here we show that, on prospective study (after 10-15 years) these PV display a poor agreement with case-control samples. We were able to obtain more accurate predictions using both DNA methylation data and PV as input features of a Random Forest model, achieving a ROC-AUC of 0.74. Furthermore, the Random Forest output correlates with the reliability of the predictions producing a ROC-AUC of 0.90 when only the most reliable predictions are taken into consideration.
引用
收藏
页码:39 / 42
页数:4
相关论文
共 50 条
  • [1] Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    Weng, Stephen F.
    Reps, Jenna
    Kai, Joe
    Garibaldi, Jonathan M.
    Qureshi, Nadeem
    [J]. PLOS ONE, 2017, 12 (04):
  • [2] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    [J]. RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769
  • [3] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    [J]. SENSORS, 2022, 22 (14)
  • [4] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [5] Risk estimation and risk prediction using machine-learning methods
    Jochen Kruppa
    Andreas Ziegler
    Inke R. König
    [J]. Human Genetics, 2012, 131 : 1639 - 1654
  • [6] Cardiovascular Risk Prediction Using Machine-learning Methods in the Middle-aged Korean Population
    Kim, Hyeon Chang
    Jo, In-Jeong
    Sung, Ji Min
    Chang, Hyuk-Jae
    [J]. CIRCULATION, 2017, 135
  • [7] Improving the accuracy of machine-learning models with data from machine test repetitions
    Andres Bustillo
    Roberto Reis
    Alisson R. Machado
    Danil Yu. Pimenov
    [J]. Journal of Intelligent Manufacturing, 2022, 33 : 203 - 221
  • [8] Improving the accuracy of machine-learning models with data from machine test repetitions
    Bustillo, Andres
    Reis, Roberto
    Machado, Alisson R.
    Pimenov, Danil Yu.
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (01) : 203 - 221
  • [9] CARDIOVASCULAR RISK PREDICTION APPLYING MACHINE LEARNING
    Castel, S.
    Maldonado, L.
    Aguilar, I.
    Malo, S.
    Rabanaque, M. J.
    [J]. GACETA SANITARIA, 2023, 37 : S204 - S204
  • [10] Improving cardiovascular risk prediction with machine learning: a focus on perivascular adipose tissue characteristics
    He, Cong
    Wu, Fangye
    Fu, Linfeng
    Kong, Lingting
    Lu, Zefeng
    Qi, Yingpeng
    Xu, Hongwei
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2024, 23 (01)