Transient response analysis for temperature-modulated chemoresistors

被引:82
|
作者
Gutierrez-Osuna, R [1 ]
Gutierrez-Galvez, A
Powar, N
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
[2] Wright State Univ, Dept Comp Sci & Engn, Dayton, OH 45435 USA
关键词
transient response analysis; pattern recognition; gas sensor arrays; electronic nose; multi-exponential models; temperature modulation;
D O I
10.1016/S0925-4005(03)00248-X
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article presents a sensor excitation and signal processing approach that combines temperature modulation and transient analysis to enhance the selectivity and sensitivity of metal-oxide gas sensors. A staircase waveform is applied to the sensor heater to extract transient information from multiple operating temperatures. Four different transient analysis techniques, Pade-Z-transform, multi-exponential transient spectroscopy (METS), window time slicing (WTS) and a novel ridge regression solution, are evaluated on the basis of their ability to improve the sensitivity and selectivity of the sensor array. The techniques are validated on two experimental databases containing serial dilutions and mixtures of organic solvents. Our results indicate that processing of the thermal transients significantly improves the sensitivity of metal-oxide chemoresistors when compared to the quasi-stationary temperature-modulated responses. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 50 条
  • [31] Analysis of the reorganization of poly(ethylene terephthalate) in the melting range by temperature-modulated calorimetry
    Schick, C
    Merzlyakov, M
    Wunderlich, B
    [J]. POLYMER BULLETIN, 1998, 40 (2-3) : 297 - 303
  • [32] Temperature-modulated superradiance near phase transition material
    Liu, Yuying
    Wang, Tongbiao
    Yang, Jianrong
    Yu, Tianbao
    Liao, Qinghua
    [J]. OPTICAL MATERIALS, 2023, 137
  • [33] Derivation of Temperature-Modulated DSC Thermal Conductivity Equations
    R. L. Blaine
    S. M. Marcus
    [J]. Journal of Thermal Analysis and Calorimetry, 1998, 54 : 467 - 476
  • [34] About Complex Heat Capacities and Temperature-Modulated Calorimetry
    H. Baur
    B. Wunderlich
    [J]. Journal of Thermal Analysis and Calorimetry, 1998, 54 : 437 - 465
  • [35] Temperature-modulated synchronization transition in coupled neuronal oscillators
    Sato, Yasuomi D.
    Okumura, Keiji
    Ichiki, Akihisa
    Shiino, Masatoshi
    Cateau, Hideyuki
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [36] Studies of a mathematical model for temperature-modulated bioluminescence tomography
    Han, Weimin
    Shen, Haiou
    Kazmi, Kamran
    Cong, Wenxiang
    Wang, Ge
    [J]. APPLICABLE ANALYSIS, 2009, 88 (02) : 193 - 213
  • [37] About complex heat capacities and temperature-modulated calorimetry
    Baur, H
    Wunderlich, B
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1998, 54 (02): : 437 - 465
  • [38] Melting of indium by temperature-modulated differential scanning calorimetry
    Ishikiriyama, K
    Boller, A
    Wunderlich, B
    [J]. JOURNAL OF THERMAL ANALYSIS, 1997, 50 (04): : 547 - 558
  • [39] Literature status on temperature-modulated differential scanning calorimetry
    Menczel, JD
    Judovits, L
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1998, 54 (02): : 419 - 436
  • [40] Temperature-modulated calorimetry in the 21st century
    Wunderlich, B
    [J]. THERMOCHIMICA ACTA, 2000, 355 (1-2) : 43 - 57