Eisenstein series on weakly spherical homogeneous spaces of GL(n)

被引:2
|
作者
Sato, F [1 ]
机构
[1] Rikkyo Univ, Fac Sci, Tokyo 1718501, Japan
关键词
D O I
10.2748/tmj/1178225014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A homogeneous space of a reductive group is called weakly spherical if the action of some proper parabolic subgroup is prehomogeneous. We associate Dirichlet series with weakly spherical homogeneous spaces defined over the rational number field and prove their functional equations in the case where the space under consideration is a homogeneous space of the general linear group.
引用
收藏
页码:23 / 69
页数:47
相关论文
共 50 条
  • [21] Embeddings of Spherical Homogeneous Spaces
    Jacopo Gandini
    Acta Mathematica Sinica, English Series, 2018, 34 : 299 - 340
  • [22] On homogeneous geodesics and weakly symmetric spaces
    Berestovskii, Valerii Nikolaevich
    Nikonorov, Yurii Gennadievich
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (03) : 575 - 589
  • [23] Weakly disk-homogeneous spaces
    Bueken, P
    Vanhecke, L
    ACTA MATHEMATICA HUNGARICA, 1998, 81 (03) : 249 - 270
  • [24] On homogeneous geodesics and weakly symmetric spaces
    Valeriĭ Nikolaevich Berestovskiĭ
    Yuriĭ Gennadievich Nikonorov
    Annals of Global Analysis and Geometry, 2019, 55 : 575 - 589
  • [25] Weakly Disk-Homogeneous Spaces
    P. Bueken
    L. Vanhecke
    Acta Mathematica Hungarica, 1998, 81 : 249 - 270
  • [26] Weakly symmetric spaces and spherical varieties
    D. N. Akhiezer
    E. B. Vinberg
    Transformation Groups, 1999, 4 : 3 - 24
  • [27] Weakly symmetric spaces and spherical varieties
    Akhiezer, DN
    Vinberg, EB
    TRANSFORMATION GROUPS, 1999, 4 (01) : 3 - 24
  • [28] Meromorphic continuation of spherical cuspidal data Eisenstein series
    Alayont, Feryal
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (06): : 1121 - 1134
  • [29] The Eisenstein series for GL(3, Z) induced from cusp forms
    Miyazaki, Tadashi
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (01): : 1 - 41
  • [30] EISENSTEIN SERIES AND THE TRACE FORMULA FOR GL(2) OVER A FUNCTION FIELD
    Flicker, Yuval Z.
    DOCUMENTA MATHEMATICA, 2014, 19 : 1 - 62