Effect of size on the failure of FRP strengthened reinforced concrete beams

被引:0
|
作者
Leung, CKY [1 ]
Chen, ZF [1 ]
Lee, SKL [1 ]
Tang, JM [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil Engn, Kowloon, Hong Kong, Peoples R China
关键词
reinforced concrete; fiber reinforced plastics; structural retrofitting; experimental testing;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The bonding of fiber reinforced plastic (FRP) plates is an effective and efficient method to improve the bending capacity of concrete beams. In the literature, various design methodologies have been proposed and several of them have been found to compare well with test data or to provide reasonable lower bounds. However, almost all the experimental data are obtained from laboratory-size specimens that are several times smaller than members in real structures. On close examination, different design methodologies exhibit significantly different trends of load capacity vs member size. With no test results on larger specimens, it is not possible to determine which approach is more appropriate for designing real size members. In this investigation, geometrically similar reinforced concrete beams with steel ratio of 0.01, and depth ranging from 0.2 in to 0.8 in were prepared. Some RC beams were tested as control while others were retrofitted with 2 to 8 layers of Carbon fiber reinforced plastic (CFRP) sheets to achieve the same CFRP/concrete area ratio. All the beams were tested to failure to investigate the variation of failure load with member size. The results of the present investigation are expected to provide useful information for (i) the extrapolation of small specimen results to large members of practical size, and (ii) the checking of theoretical models for design.
引用
收藏
页码:797 / 801
页数:5
相关论文
共 50 条
  • [41] Tests of reinforced concrete T-beams strengthened in shear by FRP sheets
    Deniaud, C
    Cheng, JJN
    CANADIAN SOCIETY FOR CIVIL ENGINEERING, VOL I, PROCEEDINGS, 1999, : 405 - 414
  • [42] Mechanical shear strength model for reinforced concrete beams strengthened with FRP materials
    Colotti, Vincenzo
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 124 : 855 - 865
  • [43] Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips
    Barris, Cristina
    Sala, Pau
    Gomez, Javier
    Torres, Lluis
    COMPOSITE STRUCTURES, 2020, 241 (241)
  • [44] A new formulation for prediction of the shear capacity of FRP in strengthened reinforced concrete beams
    Reza Kamgar
    Mohammad Hadi Bagherinejad
    Heisam Heidarzadeh
    Soft Computing, 2020, 24 : 6871 - 6887
  • [45] Reinforced concrete beams strengthened with externally bonded natural flax FRP plates
    Huang, Liang
    Yan, Bin
    Yan, Libo
    Xu, Qi
    Tan, Haozhi
    Kasal, Bohumil
    COMPOSITES PART B-ENGINEERING, 2016, 91 : 569 - 578
  • [46] NUMERICAL INVESTIGATION OF FRP-STRENGTHENED REINFORCED CONCRETE BEAMS AT HIGH TEMPERATURES
    Mahdy, Osama E.
    Hamdy, Gehan
    Abdullah, Moustafa
    CIVIL ENGINEERING JOURNAL-STAVEBNI OBZOR, 2019, 28 (02): : 219 - 232
  • [47] NLFEA sulfate-damage reinforced concrete beams strengthened with FRP composites
    Al-Rousan, R.
    Haddad, R.
    COMPOSITE STRUCTURES, 2013, 96 : 433 - 445
  • [48] Research Progress on Creep Response of FRP-strengthened Reinforced Concrete Beams
    Yao W.
    Jiang S.
    Cai T.
    Gong H.
    Tao S.
    Cailiao Daobao/Materials Reports, 2019, 33 (09): : 2890 - 2901
  • [49] Analytical method for evaluating ultimate torque of FRP strengthened reinforced concrete beams
    Ameli, Mehran
    Ronagh, Hamid R.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2007, 11 (04) : 384 - 390
  • [50] Evaluation of shear design methods of reinforced concrete beams strengthened with FRP sheets
    Deniaud, C
    Cheng, JJR
    ADVANCED COMPOSITE MATERIALS IN BRIDGES AND STRUCTURES, 2000, : 307 - 314