The real odds on winning various games of solitaire

被引:0
|
作者
Kvaalen, Eric
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:27 / 27
页数:1
相关论文
共 50 条
  • [21] Solitaire Mancala Games and the Chinese Remainder Theorem
    Jones, Brant
    Taalman, Laura
    Tongen, Anthony
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (08): : 706 - 724
  • [22] Fixed-Point Logics and Solitaire Games
    Dietmar Berwanger
    Erich Grädel
    Theory of Computing Systems, 2004, 37 : 675 - 694
  • [23] THE ART OF WINNING AT BUSINESS GAMES
    OWENS, EL
    DATA MANAGEMENT, 1987, 25 (03): : 31 - 31
  • [24] A WINNING STRATEGY FOR LOTTO GAMES
    JOE, H
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1990, 18 (03): : 233 - 244
  • [25] WINNING AN INFINITE COMBINATION OF GAMES
    Bowler, Nathan
    MATHEMATIKA, 2012, 58 (02) : 419 - 431
  • [26] Winning Cores in Parity Games
    Vester, Steen
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 662 - 671
  • [27] The Winning Ways of Concurrent Games
    Clairambault, Pierre
    Gutierrez, Julian
    Winskel, Glynn
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 235 - 244
  • [28] Finitary Winning in ω-Regular Games
    Chatterjee, Krishnendu
    Henzinger, Thomas A.
    Horn, Florian
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2009, 11 (01)
  • [29] Finitary winning in ω-regular games
    Chatterjee, Krishnendu
    Henzinger, Thomas A.
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PROCEEDINGS, 2006, 3920 : 257 - 271
  • [30] A REGIMEN FOR WINNING FOOTBALL GAMES
    BRUDZYNSKI, CN
    GENERAL PRACTICE, 1968, 37 (03): : 175 - +