Comparative Study of Deep Learning-Based Sentiment Classification

被引:52
|
作者
Seo, Seungwan [1 ]
Kim, Czangyeob [1 ]
Kim, Haedong [2 ]
Mo, Kyounghyun [3 ]
Kang, Pilsung [1 ]
机构
[1] Korea Univ, Sch Ind Management Engn, Seoul 02841, South Korea
[2] Penn State Univ, Dept Ind & Mfg Engn, State Coll, PA 16801 USA
[3] SK C&C, Seoul 463844, South Korea
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
新加坡国家研究基金会;
关键词
Sentiment classification; deep learning; convolutional neural network; recurrent neural network; word embedding; character embedding; NEURAL-NETWORK; REVIEWS; PRODUCT; OPINIONS; LEXICON; SALES;
D O I
10.1109/ACCESS.2019.2963426
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of sentiment classification is to determine whether a particular document has a positive or negative nuance. Sentiment classification is extensively used in many business domains to improve products or services by understanding the opinions of customers regarding these products. Deep learning achieves state-of-the-art results in various challenging domains. With the success of deep learning, many studies have proposed deep-learning-based sentiment classification models and achieved better performances compared with conventional machine learning models. However, one practical issue occurring in deep-learning-based sentiment classification is that the best model structure depends on the characteristics of the dataset on which the deep learning model is trained; moreover, it is manually determined based on the domain knowledge of an expert or selected from a grid search of possible candidates. Herein, we present a comparative study of different deep-learning-based sentiment classification model structures to derive meaningful implications for building sentiment classification models. Specifically, eight deep-learning models, three based on convolutional neural networks and five based on recurrent neural networks, with two types of input structures, i.e., word level and character level, are compared for 13 review datasets, and the classification performances are discussed under different perspectives.
引用
收藏
页码:6861 / 6875
页数:15
相关论文
共 50 条
  • [31] A Deep Learning-based Approach for WBC Classification
    Ramyashree, K. S.
    Sharada, B.
    Bhairava, R.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [32] A Comparative Analysis of Word Embedding and Deep Learning for Arabic Sentiment Classification
    Sabbeh, Sahar F.
    Fasihuddin, Heba A.
    ELECTRONICS, 2023, 12 (06)
  • [33] An exploratory study of deep learning-based sentiment analysis among Weibo users in China
    Song, Jian
    Wang, Mengmeng
    Li, Yingwu
    CURRENT PSYCHOLOGY, 2024, 43 (17) : 15213 - 15226
  • [34] An exploratory study of deep learning-based sentiment analysis among Weibo users in China
    Jian Song
    Mengmeng Wang
    Yingwu Li
    Current Psychology, 2024, 43 : 15213 - 15226
  • [35] A Comparative Study on Classification by Deep Learning
    Caliskan, Abdullah
    Badem, Hasan
    Basturk, Alper
    Yuksel, Mehmet Emin
    2016 NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND BIOMEDICAL ENGINEERING (ELECO), 2016, : 503 - 506
  • [36] Systematic study on deep learning-based plant disease detection or classification
    C. K. Sunil
    C. D. Jaidhar
    Nagamma Patil
    Artificial Intelligence Review, 2023, 56 : 14955 - 15052
  • [37] Systematic study on deep learning-based plant disease detection or classification
    Sunil, C. K.
    Jaidhar, C. D.
    Patil, Nagamma
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14955 - 15052
  • [38] Study a deep learning-based audio classification for detecting the distance of UAV
    Utebayeva, Dana
    Yembergenova, Assel
    IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS 2024, IEEE EAIS 2024, 2024, : 193 - 199
  • [39] Comparative analysis of deep learning-based pansharpening methods for improved image classification accuracy
    Yilmaz, Volkan
    Asikoglu, Deryanur
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (03)
  • [40] Road object detection: a comparative study of deep learning-based algorithms
    Bharat Mahaur
    Navjot Singh
    K. K. Mishra
    Multimedia Tools and Applications, 2022, 81 : 14247 - 14282