Performance of a MVE algorithm for compound eye image reconstruction using lens diversity

被引:0
|
作者
Wood, SL [1 ]
Smithson, BJ [1 ]
Rajan, D [1 ]
Christensen, MP [1 ]
机构
[1] Santa Clara Univ, Santa Clara, CA 95053 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reconstruction algorithms to compute a single improved resolution image from multiple lower resolution images have application in the design of cameras with flat form factors. The accuracy of these reconstructions will depend on measurement noise, measurement quantization, the structure of the image acquisition system, and the accuracy of the image acquisition model. This paper compares the expected and simulated performance for reconstructions from multiple lower resolution images. The analysis shows that designs using lenses with different imaging characteristics significantly improve the theoretical performance results. In addition, lens diversity allows the reconstruction problem to be naturally partitioned into a set of loosely coupled smaller reconstructions that are computationally more manageable.
引用
收藏
页码:593 / 596
页数:4
相关论文
共 50 条
  • [41] Hardware implementation of image space reconstruction algorithm using FPGAs
    Morales, Javier
    Medero, Nelson
    Santiago, Nayda G.
    Sosa, Julio
    IEEE MWSCAS'06: PROCEEDINGS OF THE 2006 49TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS,, 2006, : 433 - +
  • [42] Image reconstruction using genetic algorithm in electrical impedance tomography
    Kim, Ho-Chan
    Boo, Chang-Jin
    Kang, Min-Jae
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 938 - 945
  • [43] Reconstruction of PET Brain Image using Conjugate Gradient Algorithm
    Arunprasath, T.
    Rajasekaran, M. Pallikonda
    Kannan, S.
    Adithiyaa, V.
    PROCEEDINGS OF THE 2012 WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES, 2012, : 73 - 78
  • [44] Tomographic-image reconstruction using a hybrid genetic algorithm
    Lyons, DP
    Kihm, KD
    OPTICS LETTERS, 1997, 22 (12) : 847 - 849
  • [45] IMAGE RECONSTRUCTION USING ITERATIVE TRANSPOSE ALGORITHM FOR OPTICAL TOMOGRAPHY
    Yunos, Yusri Md.
    Abd Rahim, Ruzairi
    Green, R. G.
    Rahiman, Mohd. Hafiz Fazalul
    JURNAL TEKNOLOGI, 2007, 47
  • [46] Super-resolution image reconstruction using the ICM algorithm
    Martins, A. L. D.
    Homem, M. R. P.
    Mascarenhas, N. D. A.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1901 - 1904
  • [47] Image Reconstruction Using a Genetic Algorithm for Electrical Capacitance Tomography
    牟昌华
    彭黎辉
    姚丹亚
    萧德云
    Tsinghua Science and Technology, 2005, (05) : 587 - 592
  • [48] Tomographic-image reconstruction using a hybrid genetic algorithm
    Texas A&M Univ, College Station, United States
    Opt Lett, 12 (847-849):
  • [49] Analysis of influencing factors using Grappa algorithm for image reconstruction
    Hong, Shao
    Yao, Wang
    PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2012, : 433 - 436
  • [50] A Fast Iris Image Reconstruction Algorithm Using LLE and PSO
    Wo Y.
    Wu J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2018, 46 (01): : 97 - 102