An Information-Theoretic Analysis of the Impact of Task Similarity on Meta-Learning

被引:10
|
作者
Jose, Sharu Theresa [1 ]
Simeone, Osvaldo [1 ]
机构
[1] Kings Coll London, Dept Engn, Kings Commun Learning & Informat Proc KCLIP Lab, London, England
基金
欧洲研究理事会;
关键词
D O I
10.1109/ISIT45174.2021.9517767
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Meta-learning aims at optimizing the hyperparameters of a model class or training algorithm from the observation of data from a number of related tasks. Following the setting of Baxter [1], the tasks are assumed to belong to the same task environment, which is defined by a distribution over the space of tasks and by per-task data distributions. The statistical properties of the task environment thus dictate the similarity of the tasks. The goal of the meta-learner is to ensure that the hyperparameters obtain a small loss when applied for training of a new task sampled from the task environment. The difference between the resulting average loss, known as meta-population loss, and the corresponding empirical lass measured on the available data from related tasks, known as meta-generalization gap, is a measure of the generalization capability of the meta-learner. In this paper, we present novel information-theoretic bounds on the average absolute value of the meta-generalization gap. Unlike prior work [2], our bounds explicitly capture the impact of task relatedness, the number of tasks, and the number of data samples per task on the meta-generalization gap. Task similarity is gauged via the Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences. We illustrate the proposed bounds on the example of ridge regression with meta-learned bias.
引用
收藏
页码:1534 / 1539
页数:6
相关论文
共 50 条
  • [11] On the Direction of Discrimination: An Information-Theoretic Analysis of Disparate Impact in Machine Learning
    Wang, Hao
    Ustun, Berk
    Calmon, Flavio P.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1216 - 1220
  • [12] An Information-Theoretic Analysis of Bayesian Reinforcement Learning
    Gouverneur, Amaury
    Rodriguez-Galvez, Borja
    Oechtering, Tobias J.
    Skoglund, Mikael
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [13] On the Generalization for Transfer Learning: An Information-Theoretic Analysis
    Wu, Xuetong
    Manton, Jonathan H.
    Aickelin, Uwe
    Zhu, Jingge
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7089 - 7124
  • [14] Information-Theoretic Odometry Learning
    Sen Zhang
    Jing Zhang
    Dacheng Tao
    International Journal of Computer Vision, 2022, 130 : 2553 - 2570
  • [15] Information-theoretic competitive learning
    Kamimura, R
    IASTED: PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2003, : 359 - 365
  • [16] Information-Theoretic Odometry Learning
    Zhang, Sen
    Zhang, Jing
    Tao, Dacheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2553 - 2570
  • [17] Information-Theoretic Multi-task Learning Framework for Bayesian Optimisation
    Ramachandran, Anil
    Gupta, Sunil
    Rana, Santu
    Venkatesh, Svetha
    AI 2019: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11919 : 497 - 509
  • [19] Information-theoretic analysis of generalization capability of learning algorithms
    Xu, Aolin
    Raginsky, Maxim
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [20] Information-Theoretic Analysis of Stability and Bias of Learning Algorithms
    Raginsky, Maxim
    Rakhlin, Alexander
    Tsao, Matthew
    Wu, Yihong
    Xu, Aolin
    2016 IEEE INFORMATION THEORY WORKSHOP (ITW), 2016,