Improved device performance based on crosslinking of poly (3-hexylthiophene)

被引:0
|
作者
Gaur, Manoj [1 ]
Lohani, Jaya [2 ]
Raman, R. [2 ]
Balakrishnan, V. R. [2 ]
Raghunathan, P. [3 ]
Eswaran, S. V. [1 ]
机构
[1] Univ Delhi, St Stephens Coll, Delhi 110007, India
[2] Solid State Phys Lab, Delhi 110054, India
[3] Natl Brain Res Ctr, Manesar 122050, India
关键词
Poly (3-hexylthiophene); Crosslinkers; Bisazides; Diode devices; FIELD-EFFECT TRANSISTORS; PHOTOVOLTAIC PROPERTIES; NMR TECHNIQUES; HOLE MOBILITY; POLY(3-HEXYLTHIOPHENE); POLYTHIOPHENES; BLENDS; FILMS;
D O I
10.1016/j.synthmet.2010.07.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diode devices (glass/ITO/polymer/Al) have been fabricated using poly (3-hexylthiophene) (P3HT) crosslinked with two different biaryl crosslinkers. Crosslinking was performed by exposing the thin films with different wt% of crosslinker to UV irradiation and progress of crosslinking was monitored by IR spectroscopy. An increase in hole mobility of two orders of magnitude has been observed after crosslinking. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2061 / 2064
页数:4
相关论文
共 50 条
  • [41] Electrical characterization of diodes based on regioregular poly(3-hexylthiophene)
    Barta, P
    Sanetra, J
    Grybos, P
    Niziol, S
    Trznadel, M
    SYNTHETIC METALS, 1998, 94 (01) : 115 - 117
  • [42] The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites
    Xu, Shoubin
    Gu, Lingxiao
    Wu, Kaihua
    Yang, Haigang
    Song, Yuanqing
    Jiang, Long
    Dan, Yi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 96 (01) : 286 - 291
  • [43] Photoelectrochemical performance of titanate nanotubes modified with poly(3-methylthiophene) and poly(3-hexylthiophene)
    Hao Yan-Zhong
    Han Wen-Tao
    ACTA CHIMICA SINICA, 2006, 64 (18) : 1871 - 1875
  • [44] Reasons behind the improved thermoelectric properties of poly(3-hexylthiophene) nanofiber networks
    Endrodi, B.
    Mellar, J.
    Gingl, Z.
    Visy, C.
    Janaky, C.
    RSC ADVANCES, 2014, 4 (98): : 55328 - 55333
  • [45] Performance recovery and optimization of poly(3-hexylthiophene) transistors by thermal cycling
    Mattis, Brian A.
    Chang, Paul C.
    Subramanian, Vivek
    SYNTHETIC METALS, 2006, 156 (18-20) : 1241 - 1248
  • [46] Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite
    Zhang, Li
    Li, Ye
    Shi, Jun
    Shi, Gaoquan
    Cao, Shaokui
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 142 (2-3) : 626 - 632
  • [47] Optical properties of poly(3-hexylthiophene) and interfacial charge transfer between poly(3-hexylthiophene) and titanium dioxide in composites
    Jiang, Long
    Zhang, Jianling
    Wang, Weiwei
    Yang, Haigang
    Reisdorffer, Frederic
    Nguyen, Thien-Phap
    Dan, Yi
    JOURNAL OF LUMINESCENCE, 2015, 159 : 88 - 92
  • [48] Effect of the regioregularity of poly(3-hexylthiophene) on the performance of organic photovoltic devices
    Urien, Mathieu
    Bailly, Loic
    Vignau, Laurence
    Cloutet, Eric
    de Cuendias, Anne
    Wantz, Guillaume
    Cramail, Henri
    Hirsch, Lionel
    Parneix, Jean-Paul
    POLYMER INTERNATIONAL, 2008, 57 (05) : 764 - 769
  • [49] Device Simulation of Poly (3-Hexylthiophene) HTL Based Single and Double Halide Perovskite Solar Cells
    Sharma, Sakshi
    Gohri, Shivani
    Pandey, Rahul
    Madan, Jaya
    Sharma, Rajnish
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 2327 - 2330
  • [50] VSFG determination of the interfacial orientation of poly(3-hexylthiophene) on modified oFET dielectrics and correlation to device electrical performance
    Anglin, Timothy C.
    Speros, Joshua C.
    Massari, Aaron M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242