Supervised independent component analysis by maximizing relative entropy

被引:0
|
作者
Huang, YP [1 ]
Luo, SW [1 ]
Qi, YJ [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Comp Sci & Technol, Beijing 100044, Peoples R China
关键词
independent component analysis; face recognition; iris recognition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel algorithm called SICA-MRE (Supervised Independent Component Analysis by Maxinlizing Relative Entropy). It removes the disadvantage in traditional ICA. which ignores the contributions of independent components to recognition performance. Experimental results in face and iris recognition show that the presented algorithm has better performance.
引用
收藏
页码:1593 / 1596
页数:4
相关论文
共 50 条
  • [41] Comparison of traditional independent component analysis with variational Bayesian independent component analysis
    Li Z.
    Fan T.
    Yue X.
    Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2010, 31 (01): : 114 - 119
  • [42] INDEPENDENT COMPONENT ANALYSIS OF POLSAR IMAGES. RELATIVE NEWTON-BASED APPROACH
    Chitroub, Salim
    Hachemi, Rafik
    ICSPC: 2007 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2007, : 684 - +
  • [43] Identification of faulty sensor using relative partial decomposition via independent component analysis
    Wang, Z.
    Quek, S. T.
    11TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES (DAMAS 2015), 2015, 628
  • [44] Kernel Entropy Component Analysis
    Jenssen, Robert
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) : 847 - 860
  • [45] MIXTURE WEIGHT INFLUENCE ON KERNEL ENTROPY COMPONENT ANALYSIS AND SEMI-SUPERVISED LEARNING USING THE LASSO
    Myhre, Jonas Nordhaug
    Jenssen, Robert
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [46] Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis
    Xu, Peng
    Liu, Jianchang
    Shang, Liangliang
    Zhang, Wenle
    MEASUREMENT, 2022, 196
  • [47] Supervised functional principal component analysis
    Nie, Yunlong
    Wang, Liangliang
    Liu, Baisen
    Cao, Jiguo
    STATISTICS AND COMPUTING, 2018, 28 (03) : 713 - 723
  • [48] Federated Supervised Principal Component Analysis
    Briguglio, William
    Yousef, Waleed A.
    Traore, Issa
    Mamun, Mohammad
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 646 - 660
  • [49] Semi-supervised Component Analysis
    Watanabe, Kenji
    Wada, Toshikazu
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 3011 - 3016
  • [50] Supervised functional principal component analysis
    Yunlong Nie
    Liangliang Wang
    Baisen Liu
    Jiguo Cao
    Statistics and Computing, 2018, 28 : 713 - 723