New resveratrol (trans-3,4', 5-trihydroxystilbene) analogs were synthesized and screened for their in vitro cancer chemopreventive potential using various bioassays relevant for the prevention of carcinogenesis in humans: two assays to detect modulators of carcinogen metabolism (Cyp1A inhibition; determination of NAD(P)H/quinone reductase (QR) activity), three assays to identify radical scavenging and antioxidant properties (DPPH, ORAC, superoxide anion radicals in differentiated HL-60 cells), four assays to determine anti-inflammatory and anti-hormonal effects (iNOS, Cox-1 and aromatase inhibition, anti-estrogenic potential). 3,40,5-Tri-O-methyl resveratrol 1a was about sevenfold more active than resveratrol in inhibiting Cyp1A activity, it was a potent inducer of QR activity, and it showed pure anti-estrogenic activity (whereas resveratrol is a known mixed estrogen (ant) agonist with both estrogenic and anti-estrogenic properties). Dual estrogen ant-/agonist activity was restored in the mono-O-benzyl-substituted derivatives 4b (4'-O-benzyl resveratrol) and 5b (3-O-benzyl resveratrol). With respect to aromatase inhibition (Cyp19), which provided the highest number of actives, the benzyl-substituted series was more potent than the methyl-substituted derivatives of resveratrol, and 3-O-benzyl resveratrol 5b was about eightfold more active than resveratrol. Overall, 3,4',5-tri-O-pivaloyl resveratrol oxide 7c was identified as a potent inducer of phase 2 enzymes concomitant with inhibition of LPS-mediated iNOS induction.