A priori error estimates of mixed methods for quadratic convex optimal control problem governed by nonlinear parabolic equations

被引:0
|
作者
Lu, Z. L. [1 ]
Chen, Y. P. [2 ]
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Xiangtan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
来源
2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATION CONTROL (CCE 2009) | 2009年
关键词
a priori error estimates; mixed finite element method; nonlinear parabolic optimal control; FINITE-ELEMENT METHODS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate a priori error estimates of quadratic convex optimal control problem governed by nonlinear parabolic equations using mixed finite element methods. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. By applying some error estimates results of mixed finite element methods for parabolic equations, we derive a priori error estimates of optimal order both for the coupled state and the control approximation of the optimal control problem
引用
收藏
页码:84 / +
页数:2
相关论文
共 50 条
  • [41] Error estimates of mixed finite element methods for quadratic optimal control problems
    Xing, Xiaoqing
    Chen, Yanping
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1812 - 1820
  • [42] A Priori Estimates for Fully Nonlinear Parabolic Equations
    Tian, Guji
    Wang, Xu-Jia
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (17) : 3857 - 3877
  • [43] A New A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Integro-Differential Equations
    H. Chen
    T. Hou
    Numerical Analysis and Applications, 2024, 17 : 67 - 79
  • [44] A New A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Integro-Differential Equations
    Chen, H.
    Hou, T.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2024, 17 (01) : 67 - 79
  • [45] A priori error estimates for a coseismic slip optimal control problem
    Aguayo, Jorge
    Araya, Rodolfo
    APPLIED NUMERICAL MATHEMATICS, 2025, 209 : 84 - 99
  • [46] A Priori Error Analysis of Mixed Virtual Element Methods for Optimal Control Problems Governed by Darcy Equation
    Wang, Xiuhe
    Wang, Qiming
    Zhou, Zhaojie
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (01) : 140 - 161
  • [47] ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF A DISTRIBUTED OPTIMAL CONTROL PROBLEM GOVERNED BY THE VON KARMAN EQUATIONS
    Mallik, Gouranga
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 1137 - 1172
  • [48] INTERPOLATION COEFFICIENTS MIXED FINITE ELEMENT METHODS AND L∞ - ERROR ESTIMATES FOR NONLINEAR OPTIMAL CONTROL PROBLEM
    Lu, Zuliang
    Zhang, Shuhua
    Cao, Longzhou
    Li, Lin
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04): : 1113 - 1129
  • [49] A PRIORI ERROR ESTIMATES FOR THREE DIMENSIONAL PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
    Leykekhman, Dmitriy
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (05) : 2403 - 2435
  • [50] A posteriori error estimates for optimal distributed control governed by the evolution equations
    Xiong, Chunguang
    Li, Yuan
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (02) : 181 - 200