Mesoporous Carbon Inter layers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium-Sulfur Batteries

被引:127
|
作者
Balach, Juan [1 ]
Jaumann, Tony [1 ]
Klose, Markus [1 ]
Oswald, Steffen [1 ]
Eckert, Juergen [1 ,2 ]
Giebeler, Lars [1 ,2 ]
机构
[1] Leibniz Inst Solid State & Mat Res IFW Dresden, Inst Complex Mat, D-01069 Dresden, Germany
[2] Tech Univ Dresden, Inst Werkstoffwissensch, D-01069 Dresden, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 09期
关键词
COMPOSITE CATHODES; HIGH-PERFORMANCE; BINDER; PAPER; ELECTROLYTE; NANOTUBES; MECHANISM; SHUTTLE;
D O I
10.1021/jp512062t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium-sulfur (Li-S) battery is one of the most promising candidates for the next generation of rechargeable batteries owing to its high theoretical energy density, which is 4- to 5-fold greater than those of state-of-the-art Li-ion batteries. However, its commercial applications have been hampered due to the insulating nature of sulfur and the poor cycling stability caused by the polysulfide shuttle phenomenon. In this work, we show that Li-S batteries with a mesoporous carbon interlayer placed between the separator and the sulfur cathode not only reduces the internal resistance of the cells but also that its intrinsic mesoporosity provides a physical place for trapping soluble polysulfides as well as to alleviate the negative impact of the large volume change of sulfur. This improvement of the active material reutilization allows one to obtain a stable capacity of 1015 mAh g-1 at 0.2 C after 200 cycles despite the use of a conventional sulfur-carbon black mixture as cathode. Furthermore, we observe an excellent capacity retention (similar to 0.1% loss per cycle, after the second cycle), thus making one step closer toward feasible Li-S battery technology for applications in electric vehicles and grid-scale stationary energy storage systems.
引用
收藏
页码:4580 / 4587
页数:8
相关论文
共 50 条
  • [41] Controllable graphene coated mesoporous carbon/sulfur composite for lithium-sulfur batteries
    Chen, Shanliang
    Tang, Qunli
    Chen, Xiaohua
    Hu, Aiping
    Deng, Weina
    Liu, Zheng
    RSC ADVANCES, 2015, 5 (90): : 74138 - 74143
  • [42] Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries
    Wang, Dexian
    Fu, Aiping
    Li, Hongliang
    Wang, Yiqian
    Guo, Peizhi
    Liu, Jingquan
    Zhao, Xiu Song
    JOURNAL OF POWER SOURCES, 2015, 285 : 469 - 477
  • [43] Chemical anchor of lithium polysulfide through sulfur copolymers for high-performance lithium-sulfur batteries
    Zhu, Mengqi
    Zhao, Huaqi
    Quan, Kechun
    Chen, Huiduan
    Zhang, Shasha
    Yi, Huiping
    Zhang, Jindan
    ELECTROCHIMICA ACTA, 2024, 474
  • [44] Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium
    Chang, Jian
    Shang, Jian
    Sun, Yongming
    Ono, Luis K.
    Wang, Dongrui
    Ma, Zhijun
    Huang, Qiyao
    Chen, Dongdong
    Liu, Guoqiang
    Cui, Yi
    Qi, Yabing
    Zheng, Zijian
    NATURE COMMUNICATIONS, 2018, 9
  • [45] Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium
    Jian Chang
    Jian Shang
    Yongming Sun
    Luis K. Ono
    Dongrui Wang
    Zhijun Ma
    Qiyao Huang
    Dongdong Chen
    Guoqiang Liu
    Yi Cui
    Yabing Qi
    Zijian Zheng
    Nature Communications, 9
  • [46] A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium-sulfur batteries
    Gong, Zhijie
    Wu, Qixing
    Wang, Fang
    Li, Xu
    Fan, Xianping
    Yang, Hui
    Luo, Zhongkuan
    RSC ADVANCES, 2016, 6 (44): : 37443 - 37451
  • [47] Bacterial cellulose derived carbon nanofiber aerogel with lithium polysulfide catholyte for lithium-sulfur batteries
    Li, Shiqi
    Warzywoda, Juliusz
    Wang, Shu
    Ren, Guofeng
    Fan, Zhaoyang
    CARBON, 2017, 124 : 212 - 218
  • [48] Investigation of polysulfide dissolution behavior using various amine groups functionalized order mesoporous carbon as sulfur hosts in lithium-sulfur batteries
    Huang, Bo-Sheng
    Tu, Wan-Jung
    Chen, Jenn-Shing
    DIAMOND AND RELATED MATERIALS, 2022, 122
  • [49] The Polysulfide-Cathode Binding Energy Landscape for Lithium Sulfide Growth in Lithium-Sulfur Batteries
    Kim, Kiwon
    Kim, Jaehyun
    Moon, Jun Hyuk
    ADVANCED SCIENCE, 2023, 10 (12)
  • [50] A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium-Sulfur Batteries
    Song, Ji-Yoon
    Lee, Hyeon-Haeng
    Hong, Won Gi
    Huh, Yun Suk
    Lee, Yun Sung
    Kim, Hae Jin
    Jun, Young-Si
    NANOMATERIALS, 2018, 8 (02):