Data-Driven Adaptive Task Allocation for Heterogeneous Multi-Robot Teams Using Robust Control Barrier Functions

被引:4
|
作者
Emam, Yousef [1 ]
Notomista, Gennaro
Glotfelter, Paul [2 ]
Egerstedt, Magnus [1 ]
机构
[1] Georgia Inst Technol, Inst Robot & Intelligent Machines, Atlanta, GA 30332 USA
[2] Optimus Ride, MA 0710, Boston, MA USA
关键词
COORDINATION;
D O I
10.1109/ICRA48506.2021.9560857
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-robot task allocation is a ubiquitous problem in robotics due to its applicability in a variety of scenarios. Adaptive task-allocation algorithms account for unknown disturbances and unpredicted phenomena in the environment where robots are deployed to execute tasks. However, this adaptivity typically comes at the cost of requiring precise knowledge of robot models in order to evaluate the allocation effectiveness and to adjust the task assignment online. As such, environmental disturbances can significantly degrade the accuracy of the models which in turn negatively affects the quality of the task allocation. In this paper, we leverage Gaussian processes, differential inclusions, and robust control barrier functions to learn environmental disturbances in order to guarantee robust task execution. We show the implementation and the effectiveness of the proposed framework on a real multi-robot system.
引用
收藏
页码:9124 / 9130
页数:7
相关论文
共 50 条
  • [31] Adaptive heterogeneous multi-robot collaboration from formal task specifications
    Schillinger, Philipp
    Garcia, Sergio
    Makris, Alexandros
    Roditakis, Konstantinos
    Logothetis, Michalis
    Alevizos, Konstantinos
    Ren, Wei
    Tajvar, Pouria
    Pelliccione, Patrizio
    Argyros, Antonis
    Kyriakopoulos, Kostas J.
    Dimarogonas, Dimos, V
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 145
  • [32] Robust Data-Driven Control Barrier Functions for Unknown Continuous Control Affine Systems
    Jin, Zeyuan
    Khajenejad, Mohammad
    Yong, Sze Zheng
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1309 - 1314
  • [33] Robust Data-Driven Safe Control Using Density Functions
    Zheng, Jian
    Dai, Tianyu
    Miller, Jared
    Sznaier, Mario
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2611 - 2616
  • [34] OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation
    Wong, Josiah
    Makoviychuk, Viktor
    Anandkumar, Anima
    Zhu, Yuke
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 10519 - 10526
  • [35] Multi-robot task allocation using compound emotion algorithm
    Yuan, Wei
    Zeng, Bi
    [J]. ADVANCED PARALLEL PROCESSING TECHNOLOGIES, PROCEEDINGS, 2007, 4847 : 545 - +
  • [36] Using a sensor network for distributed multi-robot task allocation
    Batalin, MA
    Sukhatme, GS
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 158 - 164
  • [37] Centralized and Distributed Task Allocation in Multi-Robot Teams via a Stochastic Clustering Auction
    Zhang, Kai
    Collins, Emmanuel G., Jr.
    Shi, Dongqing
    [J]. ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, 2012, 7 (02)
  • [38] The Task Allocation Model based on Reputation for the Heterogeneous Multi-robot Collaboration System
    Shi, Zhiguo
    Wei, Junming
    Wei, Xujian
    Tan, Kun
    Wang, Zhiliang
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6642 - 6647
  • [39] Multi-Robot Systems Research: A Data-Driven Trend Analysis
    Marques, Joao V. Amorim
    Lorente, Maria-Teresa
    Gross, Roderich
    [J]. DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, DARS 2022, 2024, 28 : 537 - 549
  • [40] Adaptive Synchronization control of multi-robot teams: Cooperative and Coordinated schemes
    Bouteraa, Yassine
    Ghommam, Jawhar
    Derbel, Nabil
    Poisson, Gerard
    [J]. 18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2010, : 586 - 591