Embedded minimal surfaces: Forces, topology and symmetries

被引:15
|
作者
Ros, A [1 ]
机构
[1] UNIV GRANADA,FAC CIENCIAS,DEPT GEOMETRIA & TOPOL,E-18071 GRANADA,SPAIN
关键词
D O I
10.1007/s005260050050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove topological uniqueness theorems for embedded minimal surfaces in R(3) under the assumption that certain forces associated to these surfaces are vertical. We give applications to minimal surfaces with symmetries and with free boundary.
引用
收藏
页码:469 / 496
页数:28
相关论文
共 50 条
  • [31] On properly embedded minimal surfaces with three ends
    Martín, F
    Weber, M
    DUKE MATHEMATICAL JOURNAL, 2001, 107 (03) : 533 - 559
  • [32] Nonlocal symmetries, spectral parameter and minimal surfaces in AdS/CFT
    Klose, Thomas
    Loebbert, Florian
    Muenkler, Hagen
    NUCLEAR PHYSICS B, 2017, 916 : 320 - 372
  • [33] Shape-Memory Effect and the Topology of Minimal Surfaces
    Yin, Mengdi
    Vvedensky, Dimitri D.
    SYMMETRY-BASEL, 2024, 16 (09):
  • [34] Polymer Structures with the Topology of Triply Periodic Minimal Surfaces
    Shevchenko, V. Ya.
    Sychev, M. M.
    Lapshin, A. E.
    Lebedev, L. A.
    Gruzdkov, A. A.
    Glezer, A. M.
    GLASS PHYSICS AND CHEMISTRY, 2017, 43 (06) : 608 - 610
  • [35] Polymer Structures with the Topology of Triply Periodic Minimal Surfaces
    V. Ya. Shevchenko
    M. M. Sychev
    A. E. Lapshin
    L. A. Lebedev
    A. A. Gruzdkov
    A. M. Glezer
    Glass Physics and Chemistry, 2017, 43 : 608 - 610
  • [36] THE EXISTENCE OF EMBEDDED MINIMAL-SURFACES AND THE PROBLEM OF UNIQUENESS
    MEEKS, WW
    YAU, ST
    MATHEMATISCHE ZEITSCHRIFT, 1982, 179 (02) : 151 - 168
  • [37] EMBEDDED MINIMAL-SURFACES WITH AN INFINITE NUMBER OF ENDS
    CALLAHAN, M
    HOFFMAN, D
    MEEKS, WH
    INVENTIONES MATHEMATICAE, 1989, 96 (03) : 459 - 505
  • [39] Embedded, simply connected, minimal surfaces with bounded curvature
    Xavier, F
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (06) : 1344 - 1356
  • [40] Liouville-type properties for embedded minimal surfaces
    Meeks, William H., III
    Perez, Joaquin
    Ros, Antonio
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2006, 14 (04) : 703 - 723