Fault diagnosis method of high power charging equipment based on Neural Network

被引:0
|
作者
Gao, De-xin [1 ]
Lv, Yi-wei [1 ]
Wang, Kai [1 ]
Wang, Yi [1 ]
Yang, Qing [2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Automat & Elect Engineer, Qingdao 266061, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Informat Sci & Technol, Qingdao 266061, Peoples R China
关键词
Electric vehicles; High power charging equipment; fault diagnosis; BP neural network;
D O I
10.1109/CCDC52312.2021.9601632
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High power charging equipment is the necessary supporting facilities in the electric vehicle industry, but failure will inevitably occur in the process of equipment use. Through the research on the structure and principle of charging equipment, the influencing factors and causes of equipment failure are analyzed. In this paper, BP neural network algorithm is used to establish the nonlinear relationship between the fault influencing factors and fault causes of the charging equipment with the input and output of the neural network, and the fault diagnosis is carried out for the high-power charging equipment of electric vehicles. Through the simulation, the BP neural network fault diagnosis model has higher fault diagnosis accuracy. The model is applied to the condition monitoring and fault diagnosis system of high-power charging equipment of electric vehicles, and good diagnosis results are obtained, which has practical application value.
引用
收藏
页码:4542 / 4547
页数:6
相关论文
共 50 条
  • [41] A neural network-based scheme for fault diagnosis of power transformers
    Mohamed, EA
    Abdelaziz, A
    Mostafa, AS
    ELECTRIC POWER SYSTEMS RESEARCH, 2005, 75 (01) : 29 - 39
  • [42] Fault Diagnosis in Power Plant Based on Multi-Neural Network
    Xia Fei
    Zhang Hao
    Peng Daogang
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2014, : 180 - 184
  • [43] Fault diagnosis of airplane power system based on BP neural network
    Kuang, LQ
    Yin, GM
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 1789 - 1791
  • [44] The fault diagnosis of power transformer based on improved RBF neural network
    Guo, Ying-Jun
    Sun, Li-Hua
    Liang, Yong-Chun
    Ran, Hai-Chao
    Sun, Hui-Qin
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1111 - 1114
  • [45] Intelligent Fault Diagnosis of Military Power Based on BP Neural Network
    Zhang, Rui
    Fan, Bo
    Luan, Xinyu
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING (ICMMCCE 2017), 2017, 141 : 799 - 804
  • [46] Power Transformer Fault Diagnosis Based on Improved BP Neural Network
    Jin, Yongshuang
    Wu, Hang
    Zheng, Jianfeng
    Zhang, Ji
    Liu, Zhi
    ELECTRONICS, 2023, 12 (16)
  • [47] Fault diagnosis of power electronic circuits based on quantum neural network
    Long, Bohua
    Tan, Yanghong
    Xu, Hui
    Sun, Lei
    Wen, Juan
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2009, 24 (10): : 170 - 175
  • [48] Fault diagnosis of power electronic system based on fault gradation and neural network group
    Ma, Chengcai
    Gu, Xiaodong
    Wang, Yuanyuan
    NEUROCOMPUTING, 2009, 72 (13-15) : 2909 - 2914
  • [49] Cellular Network Fault Diagnosis Method Based on a Graph Convolutional Neural Network
    Amuah, Ebenezer Ackah
    Wu, Mingxiao
    Zhu, Xiaorong
    SENSORS, 2023, 23 (16)
  • [50] Application of Improved BP Neural Network Based on Genetic Algorithm in Fault Diagnosis of Equipment
    Ren, Xin
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 1076 - 1080