On the free surface boundary of moving particle semi-implicit method for thermocapillary flow

被引:6
|
作者
Wang, Zidi [1 ]
Sugiyama, Tomoyuki [1 ]
机构
[1] Japan Atom Energy Agcy, Nucl Safety Res Ctr, 2-4 Shirakata, Tokai, Ibaraki 3191195, Japan
关键词
Free surface boundary; Marangoni boundary condition; Thermocapillary flow; Buoyancy-marangoni convection; MPS method; Meshfree particle method; MARANGONI CONVECTION; INCOMPRESSIBLE-FLOW; FLOODING ANALYSIS; MPS METHOD; HYDRODYNAMICS; SIMULATION; CONSERVATION; STABILITY; ALGORITHM; ACCURATE;
D O I
10.1016/j.enganabound.2021.11.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The moving particle semi-implicit (MPS) method has great potential in dealing with free surface flow due to its Lagrangian nature. In most cases, the free surface boundary is simply served as the pressure boundary condition. In this paper, an improved MPS method is presented for thermocapillary driven free surface flow. A series of surface nodes explicitly represent the free surface boundary. The normal stress on the free surface provides the Dirichlet pressure boundary condition, while the velocity boundary condition, i.e., Marangoni stress, is enforced through the Taylor series expansion and least squares method. Meanwhile, a quasi-Lagrangian formulation is introduced to avoid particle clustering and the corresponding numerical instability by slightly modifying the advection velocity. The upwind scheme is employed for the convection term to obtain accurate and stable results. A novel constraint scheme with the divergence of provisional velocity is developed for the pressure gradient to enhance stability further. The consistency of the derived generalized boundary condition is firstly verified with a simple convergence test. Then, several numerical tests, including square patch rotation, lid-driven and square droplet oscillation, are simulated to show the improvements. Finally, thermocapillary driven flows in an open cavity without and with buoyancy effect are studied. Good agreements are obtained by comparing with reference simulations taken from literature. Heat transfer characteristics are further investigated for different dimensionless numbers, including the Rayleigh number and Marangoni number. PE-FRONTEND
引用
收藏
页码:266 / 283
页数:18
相关论文
共 50 条
  • [21] Implementation of the moving particle semi-implicit method on GPU
    Zhu XiaoSong
    Cheng Liang
    Lu Lin
    Teng Bin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (03) : 523 - 532
  • [22] Stable multiphase moving particle semi-implicit method for incompressible interfacial flow
    Duan, Guangtao
    Chen, Bin
    Koshizuka, Seiichi
    Xiang, Hao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 636 - 666
  • [23] OPTIMIZATION OF MOVING PARTICLE SEMI-IMPLICIT (MPS) METHOD AND STUDYING OF FLOW INSTABILITY
    Guo, Kailun
    Chen, Ronghua
    Qiu, Suizheng
    Tian, Wenxi
    Su, Guanghui
    Wu, Junmei
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2018, VOL 8, 2018,
  • [24] Flow behaviour over a 2D body using the moving particle semi-implicit method with free surface stabilisation
    Perez C.A.
    Garcia M.J.
    International Journal on Interactive Design and Manufacturing, 2017, 11 (03) : 633 - 640
  • [25] Improved wall weight function with polygon boundary in moving particle semi-implicit method
    Zhang, Tian Gang
    Koshizuka, Seiichi
    Shibata, Kazuya
    Murotani, Kohei
    Ishii, Eiji
    Transactions of the Japan Society for Computational Engineering and Science, 2015, 2015
  • [26] An improved moving particle semi-implicit method for interfacial flows
    Wen, Xiao
    Zhao, Weiwen
    Wan, Decheng
    APPLIED OCEAN RESEARCH, 2021, 117
  • [27] Enhancement of stability and accuracy of the moving particle semi-implicit method
    Khayyer, Abbas
    Gotoh, Hitoshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 3093 - 3118
  • [28] DEVELOPMENT OF LEAST SQUARES MOVING PARTICLE SEMI-IMPLICIT METHOD
    Tamai, Tasuku
    Shibata, Kazuya
    Koshizuka, Seiichi
    PARTICLE-BASED METHODS III: FUNDAMENTALS AND APPLICATIONS, 2013, : 840 - 851
  • [29] Improved pressure calculation for the moving particle semi-implicit method
    Shibata, Kazuya
    Masaie, Issei
    Kondo, Masahiro
    Murotani, Kohei
    Koshizuka, Seiichi
    COMPUTATIONAL PARTICLE MECHANICS, 2015, 2 (01) : 91 - 108
  • [30] GPU-acceleration for Moving Particle Semi-Implicit method
    Hori, Chiemi
    Gotoh, Hitoshi
    Ikari, Hiroyuki
    Khayyer, Abbas
    COMPUTERS & FLUIDS, 2011, 51 (01) : 174 - 183