Local stationarity and simulation of self-affine intrinsic random functions

被引:10
|
作者
Stein, ML [1 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
fast Fourier transform (FFT); fractional Brownian motion; Gaussian random field; locally equivalent stationary covariance; turning bands;
D O I
10.1109/18.923722
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian intrinsic random functions with power law generalized covariance functions, which in one dimension essentially correspond to fractional and integrated fractional Brownian motions, form a class of self-affine models for random fields with a wide range of smoothness properties, These random fields are nonstationary, but appropriately filtered versions of them are stationary. This work proves that most such random functions are locally stationary in a certain well-defined sense. This result yields an efficient and exact method of simulating all fractional and integrated fractional Brownian motions.
引用
收藏
页码:1385 / 1390
页数:6
相关论文
共 50 条
  • [41] Lattice-tiling properties of integral self-affine functions
    Department of Mathematics, Univ. Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, United States
    不详
    Appl Math Lett, 5 (1-4):
  • [42] Local dimensions of measures on infinitely generated self-affine sets
    Rossi, Eino
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 1030 - 1039
  • [43] Multifractal Spectra of Random Self-Affine Multifractal Sierpinski Sponges in Rd
    Fraser, J. M.
    Olsen, L.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (03) : 937 - 983
  • [44] Rough-surface shadowing of self-affine random rough surfaces
    Parviainen, Hannu
    Muinonen, Karri
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2007, 106 (1-3): : 398 - 416
  • [45] Self-affine fronts in self-affine fractures: Large and small-scale structure
    Drazer, G
    Auradou, H
    Koplik, J
    Hulin, JP
    PHYSICAL REVIEW LETTERS, 2004, 92 (01) : 4
  • [46] DESCRIPTION OF SURFACE-ROUGHNESS AS AN APPROXIMATE SELF-AFFINE RANDOM STRUCTURE
    YORDANOV, OI
    IVANOVA, K
    SURFACE SCIENCE, 1995, 331 : 1043 - 1049
  • [47] Long-range self-affine correlations in a random soliton gas
    Guerrero, L.E.
    Lopez-Atencio, E.
    Gonzalez, J.A.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (6-B):
  • [48] Long-range self-affine correlations in a random soliton gas
    Guerrero, LE
    LopezAtencio, E
    Gonzalez, JA
    PHYSICAL REVIEW E, 1997, 55 (06): : 7691 - 7695
  • [49] SELF-AFFINE SETS WITH NON-COMPACTLY SUPPORTED RANDOM PERTURBATIONS
    Jordan, Thomas
    Jurga, Natalia
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 771 - 785
  • [50] Self-affine quasiperiodic tilings
    Gahler, F
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 972 - 976