MDG and SNR Estimation in SDM Transmission Based on Artificial Neural Networks

被引:3
|
作者
Ospina, Ruby S. B. [1 ]
van den Hout, Menno [2 ]
van der Heide, Sjoerd [2 ]
van Weerdenburg, John [3 ,4 ]
Ryf, Roland [5 ]
Fontaine, Nicolas K. [5 ]
Chen, Haoshuo [5 ]
Amezcua-Correa, Rodrigo [6 ]
Okonkwo, Chigo [2 ]
Mello, Darli A. A. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083970 Campinas, Brazil
[2] Eindhoven Univ Technol, High Capac Opt Transmiss Lab, Electroopt Commun Grp, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[4] Infinera, San Jose, CA 95119 USA
[5] Nokia Bell Labs, Holmdel, NJ 07733 USA
[6] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
基金
巴西圣保罗研究基金会;
关键词
Mode-dependent gain; mode-dependent loss; optical fiber communications; space division multiplexing; MODE; RECEIVERS; CAPACITY; FIBERS; GAIN;
D O I
10.1109/JLT.2022.3174778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increase in capacity provided by coupled space division multiplexing (SDM) systems is fundamentally limited by mode-dependent gain (MDG) and amplified spontaneous emission (ASE) noise. Therefore, monitoring MDG and optical signalto-noise ratio (SNR) is essential for accurate performance evaluation and troubleshooting. Recent works show that the conventional MDG estimation method based on the transfer matrix of multipleinput multiple-output(MIMO) equalizers optimizing the minimum mean square error (MMSE) underestimates the actual value at low SNRs. Besides, estimating the optical SNR itself is not a trivial task in SDM systems, as MDG strongly influences the electrical SNR after the equalizer. In a recent work we propose an MDG and SNR estimation method using artificial neural networks (ANNs). The proposed ANN-based method processes features extracted at the receiver after digital signal processing (DSP). In this paper, we discuss the ANN-based method in detail, and validate it in an experimental 73-km 3-mode transmission link with controlled MDG and SNR. After validation, we apply the method in a case study consisting of an experimental long-haul 6-mode link. The results show that the ANN estimates both MDG and SNR with high accuracy, outperforming conventional methods.
引用
收藏
页码:5021 / 5030
页数:10
相关论文
共 50 条
  • [1] Neural-network-based MDG and Optical SNR Estimation in SDM Transmission
    Ospina, Ruby S. B.
    van den Hout, Menno
    van der Heide, Sjoerd
    Okonkwo, Chigo
    Mello, Darli A. A.
    2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [2] Digital Signal Processing for MDG Estimation in Long-Haul SDM Transmission
    Ospina, Ruby S. B.
    Mello, Darli A. A.
    Zischler, Lucas
    Luis, Ruben S.
    Puttnam, Benjamin J.
    Furukawa, Hideaki
    van den Hout, Menno
    van der Heide, Sjoerd
    Okonkwo, Chigo
    Ryf, Roland
    Rademacher, Georg
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (03) : 1075 - 1084
  • [3] Transmission lines fault location estimation based on artificial neural networks and power quality monitoring data
    Hubana, Tank
    2018 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2018,
  • [4] Power transmission lines fault direction estimation using artificial neural networks
    SanayePasand, M
    Malik, OP
    1996 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING - CONFERENCE PROCEEDINGS, VOLS I AND II: THEME - GLIMPSE INTO THE 21ST CENTURY, 1996, : 758 - 761
  • [5] Estimation the Transmission between Antennas Using Artificial Neural Networks in the UWB Band
    Kotol, M.
    Prokes, A.
    Mikulasek, T.
    Raida, Z.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 1465 - 1469
  • [6] Estimation of glandular dose in mammography based on artificial neural networks
    Trevisan Massera, Rodrigo
    Tomal, Alessandra
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09):
  • [8] Artificial Neural Networks based Age Estimation of Electronic Devices
    Kunze, S.
    Poeschl, R.
    Faschingbauer, A.
    Eider, M.
    2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 827 - 832
  • [9] Enhanced Loran skywave delay estimation based on artificial neural network in low SNR environment
    Zhang, Kai
    Wan, Guobin
    Xi, Xiaoli
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (01): : 127 - 132
  • [10] Short-Term Estimation of Transmission Reliability Margin Using Artificial Neural Networks
    Khatavkar, V.
    Swathi, D.
    Mayadeo, H.
    Dharme, A.
    INTERNATIONAL PROCEEDINGS ON ADVANCES IN SOFT COMPUTING, INTELLIGENT SYSTEMS AND APPLICATIONS, ASISA 2016, 2018, 628 : 17 - 27