Techno-economic Assessment of Flexible Combined Heat and Power Plant with Carbon Capture and Storage

被引:0
|
作者
Saint-Pierre, Adrien [1 ]
Mancarella, Pierluigi [1 ]
机构
[1] Univ Manchester, Elect Energy & Power Syst Grp, Manchester, Lancs, England
关键词
carbon capture and storage; combined heat and power; flexibility; cap-and-trade market; CO2; CAPTURE; OPERATION; MARKET;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As Carbon Capture and Storage (CCS) is now regarded as on its way to become a mature technology to reduce dramatically CO2 emissions from conventional generation, its economic ineffectiveness may still be preventing its large-scale adoption. In this respect, new strategies for flexible operation of Carbon Capture and Storage systems could bring substantial benefits allowing achieving both ambitious CO2 reductions and higher profits. In addition, further economic and environmental benefits could be achieved by adopting high efficiency Combined Heat and Power (CHP) plants. On these premises, this paper investigates the benefits of coupling a flexible CCS system and a flexible CHP plant, with the aim of deploying the flexibility available in both CCS and CHP to consume/produce more or less electricity in response to market conditions. A mathematical model is developed to maximise profit responding to volatile market prices by optimally switching the CCS and CHP plants between different operating modes. The effectiveness and the usefulness of the proposed model are demonstrated on a realistic case study with extensive sensitivity analyses.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Techno-Economic Assessment of Residential Heat Pump Integrated with Thermal Energy Storage
    Sultan, Sara
    Hirschey, Jason
    Kumar, Navin
    Cui, Borui
    Liu, Xiaobing
    LaClair, Tim J.
    Gluesenkamp, Kyle R.
    ENERGIES, 2023, 16 (10)
  • [42] A techno-economic assessment of CO2 capture in biomass and waste-fired combined heat and power plants - A Swedish case study
    Beiron, Johanna
    Normann, Fredrik
    Johnsson, Filip
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 118
  • [43] Techno-economic feasibility and comparison of coal water slurry concentration on a coal to methanol plant with consideration of carbon capture and storage
    Hu, Shunxuan
    Chen, Yumeng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 12312 - 12328
  • [44] New Approach to Techno-economic Assessment of Power Plants with Carbon Capture and Storage: The Inclusion of Realistic Dispatch Profiles To Calculate Techno-economics of Part Load Operations
    van der Spek, Mijndert
    Manzolini, Giampaolo
    Ramirez, Andrea
    ENERGY & FUELS, 2017, 31 (01) : 1047 - 1049
  • [45] Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at Coal-Fired Power Plants
    Zhai, Haibo
    Rubin, Edward S.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (06) : 3006 - 3014
  • [46] Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology
    Kontou, V
    Grimekis, D.
    Braimakis, K.
    Karellas, S.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 157
  • [47] Techno-economic analysis and optimization of a binary geothermal combined district heat and power plant for Puga Valley, India
    Ramachandran, Siddharth
    Bhogilla, Satya Sekhar
    Vijayan, P. K.
    RENEWABLE ENERGY, 2024, 234
  • [48] Techno-economic assessment of thorium power in Canada
    Graves, Brian
    Wong, Alain
    Mousavi, Kian
    Canter, Christina
    Kumar, Amit
    ANNALS OF NUCLEAR ENERGY, 2015, 85 : 481 - 487
  • [49] Techno-economic assessment of a subsea energy storage technology for power balancing services
    Hahn, Henning
    Hau, Daniel
    Dick, Christian
    Puchta, Matthias
    ENERGY, 2017, 133 : 121 - 127
  • [50] On the cost of zero carbon hydrogen: A techno-economic analysis of steam methane reforming with carbon capture and storage
    Mullen, Daniel
    Herraiz, Laura
    Gibbins, Jon
    Lucquiaud, Mathieu
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 126