Techniques for dealing with missing values in classification

被引:0
|
作者
Liu, WZ
White, AP
Thompson, SG
Bramer, MA
机构
[1] Univ Portsmouth, Artificial Intelligence Res Grp, Dept Informat Sci, Milton PO4 8JF, Hampshire, England
[2] Univ Birmingham, Sch Math & Stat, Birmingham B15 2TT, W Midlands, England
关键词
missing values; dynamic path generation; intelligent data analysis; inductive learning; knowledge discovery; data mining; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brief overview of the history of the development of decision tree induction algorithms is followed by a review of techniques for dealing with missing attribute values in the operation of these methods. The technique of dynamic path generation is described in the context of tree-based classification methods. The waste of data which can result from casewise deletion of missing values in statistical algorithms is discussed and alternatives proposed.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [31] Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation
    J. A. Martín-Fernández
    C. Barceló-Vidal
    V. Pawlowsky-Glahn
    [J]. Mathematical Geology, 2003, 35 : 253 - 278
  • [32] Dealing with zeros and missing values in compositional data sets using nonparametric imputation
    Martín-Fernández, JA
    Barceló-Vidal, C
    Pawlowsky-Glahn, V
    [J]. MATHEMATICAL GEOLOGY, 2003, 35 (03): : 253 - 278
  • [33] A Robust Learning Model for Dealing with Missing Values in Many-Core Architectures
    Lopes, Noel
    Ribeiro, Bernardete
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT II, 2011, 6594 : 108 - 117
  • [34] Missing values imputation techniques for Neural Networks patterns
    Lopez-Molina, Thomas
    Perez-Mendez, Anna
    Rivas-Echeverria, Francklin
    [J]. NEW ASPECTS OF SYSTEMS, PTS I AND II, 2008, : 290 - +
  • [35] Proper Imputation Techniques for Missing Values in Data sets
    Aljuaid, Tahani
    Sasi, Sreela
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON DATA SCIENCE & ENGINEERING (ICDSE), 2016, : 146 - 150
  • [36] Resampling time series using missing values techniques
    Andrés M. Alonso
    Daniel Peña
    Juan Romo
    [J]. Annals of the Institute of Statistical Mathematics, 2003, 55 : 765 - 796
  • [37] Classification of Datasets with Missing Values: Two Level Approach
    Bruha, Ivan
    [J]. PATTERN RECOGNITION IN INFORMATION SYSTEMS, 2010, : 90 - 98
  • [38] Adapting Fuzzy Rough Sets for Classification with Missing Values
    Lenz, Oliver Urs
    Peralta, Daniel
    Cornelis, Chris
    [J]. ROUGH SETS (IJCRS 2021), 2021, 12872 : 192 - 200
  • [39] Handling missing values when applying classification models
    Saar-Tsechansky, Maytal
    Provost, Foster
    [J]. Journal of Machine Learning Research, 2007, 8 : 1625 - 1657
  • [40] SOME WORK ON TREATMENT OF MISSING VALUES IN CLASSIFICATION PROBLEMS
    CHAN, LS
    DUNN, OJ
    [J]. BIOMETRICS, 1972, 28 (04) : 1164 - 1165