Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows

被引:0
|
作者
Megan, M [1 ]
Sasu, AL [1 ]
Sasu, B [1 ]
机构
[1] Univ West, Dept Math, Timisoara 1900, Romania
关键词
uniform exponential dichotomy; linear skew-product semiflows;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the connections between the uniform exponential dichotomy of a discrete linear skew-product semiflow and the uniform admissibility of the pair (c(0) (N, X), c(00) (N, X)). We give necessary and sufficient conditions for uniform exponential dichotomy of linear skew-product semiflows in terms of the uniform admissibility of the pairs (c(0) (N, X), c(00) (N, X)) and (C-0 (R+, X), C-00 (R+, X)), respectively. We generalize a dichotomy theorem due to Van Minh, Rabiger and Schnaubelt for the case of linear skew-product semiflows.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] A note on equilibrium of eventually strongly monotone skew-product semiflows
    Li, Xi-liang
    Zheng, Zuo-huan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (02): : 307 - 310
  • [42] A note on equilibrium of eventually strongly monotone skew-product semiflows
    Xi-liang Li
    Zuo-huan Zheng
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 307 - 310
  • [43] EQUI-ATTRACTION AND CONTINUITY OF ATTRACTORS FOR SKEW-PRODUCT SEMIFLOWS
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Da Costa, Henrique B.
    Langa, Jose A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 2949 - 2967
  • [44] Uniform ergodic theorems for discontinuous skew-product flows and applications to Schrodinger equations
    Zhang, Meirong
    Zhou, Zhe
    NONLINEARITY, 2011, 24 (05) : 1539 - 1564
  • [45] Monotone skew-Product Semiflows for Caratheodory Differential Equations and Applications
    Longo, Iacopo P.
    Novo, Sylvia
    Obaya, Rafael
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (04) : 2997 - 3033
  • [46] Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems
    Obaya, Rafael
    Sanz, Ana M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4135 - 4163
  • [47] On exponential dichotomy, Bohl-Perron type theorems and stability of difference equations
    Berezansky, L
    Braverman, E
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) : 511 - 530
  • [48] Monotone skew-Product Semiflows for Carathéodory Differential Equations and Applications
    Iacopo P. Longo
    Sylvia Novo
    Rafael Obaya
    Journal of Dynamics and Differential Equations, 2022, 34 : 2997 - 3033
  • [49] Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows
    Pham Viet Hai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4390 - 4396
  • [50] WEAK EXPONENTIAL DICHOTOMY FOR SKEW-EVOLUTION SEMIFLOWS IN BANACH SPACES
    Minda, Andrea
    Tomescu, Mihaela
    Ramneantu, Luminita
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 137 - 138