Dynamical approaches and multi-quadratic integer programming for seizure prediction

被引:11
|
作者
Chaovalitwongse, W
Pardalos, PM
Iasemidis, LD
Shiau, DS
Sackellares, JC
机构
[1] Univ Florida, McKnight Brain Inst, Dept Neurosci, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Comp Sci, Gainesville, FL 32611 USA
[4] Univ Florida, Dept Biomed Engn, Gainesville, FL 32611 USA
[5] Univ Florida, Dept Neurol, Gainesville, FL 32611 USA
[6] Univ Florida, Ctr Appl Optimizat, Gainesville, FL 32611 USA
[7] Malcolm Randall VA Med Ctr, Gainesville, FL USA
[8] Arizona State Univ, Dept Biomed Engn, Tempe, AZ USA
[9] Arizona State Univ, Ctr Syst Sci & Engn Res, Tempe, AZ USA
来源
OPTIMIZATION METHODS & SOFTWARE | 2005年 / 20卷 / 2-3期
关键词
multi-quadratic 0-1 programming problem; dynamical approaches; EEG; seizure prediction;
D O I
10.1080/10556780512331318173
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this article, we present dynamical approaches and multi-quadratic integer programming techniques to study the problem of seizure prediction. The data used in our studies consist of continuous intracranial electroencephalograms (EEGs) from patients with temporal lobe epilepsy. The results of this study can be used as a criterion to pre-select the critical electrode sites that can be used to predict epileptic seizures.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 50 条
  • [21] Stability of Generalized Multi-quadratic Mappings in Lipschitz Spaces
    Dashti, Mahshid
    Khodaei, Hamid
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [22] Stability of Generalized Multi-quadratic Mappings in Lipschitz Spaces
    Mahshid Dashti
    Hamid Khodaei
    Results in Mathematics, 2019, 74
  • [23] Proximity in concave integer quadratic programming
    Del Pia, Alberto
    Ma, Mingchen
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 871 - 900
  • [24] UNIT INTEGER QUADRATIC BINARY PROGRAMMING
    YARLAGADDA, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 94 (01) : 246 - 267
  • [25] ON SIMULTANEOUS APPROXIMATION IN QUADRATIC INTEGER PROGRAMMING
    GRANOT, F
    SKORINKAPOV, J
    OPERATIONS RESEARCH LETTERS, 1989, 8 (05) : 251 - 255
  • [26] Quadratic integer programming and the Slope Conjecture
    Garoufalidis, Stavros
    van der Veen, Roland
    NEW YORK JOURNAL OF MATHEMATICS, 2016, 22 : 907 - 932
  • [27] RELATIONSHIPS BETWEEN QUADRATIC AND INTEGER PROGRAMMING
    REEVES, GR
    OPERATIONS RESEARCH, 1975, 23 : B319 - B319
  • [28] QUADRATIC INTEGER PROGRAMMING GENERALIZATION OF XY
    CONREY, JB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A638 - A638
  • [29] Proximity in concave integer quadratic programming
    Alberto Del Pia
    Mingchen Ma
    Mathematical Programming, 2022, 194 : 871 - 900
  • [30] Ranking in quadratic integer programming problems
    Gupta, R
    Bandopadhyaya, L
    Puri, MC
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 95 (01) : 231 - 236