Supereulerian graphs and the Petersen graph, II

被引:0
|
作者
Chen, ZH
Lai, HJ
机构
[1] Butler Univ, Indianapolis, IN 46208 USA
[2] W Virginia Univ, Morgantown, WV 26506 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we verify two conjectures of Catlin in [J. Graph Theory 13 (1989) 465 - 483] for graphs with at most 11 vertices. These are used to prove the following theorem which improves prior results in [10] and [13]: Let G be a 3-edge-connected simple graph with order n. If n is large and if for every edge uv is an element of E(G), d(u) + d(v) greater than or equal to n/6 - 2, then either G has a spanning eulerian subgraph or G can be contracted to the Petersen graph.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
  • [41] On extremal k-supereulerian graphs
    Niu, Zhaohong
    Sun, Liang
    Xiong, Liming
    Lai, Hong-Jian
    Yan, Huiya
    DISCRETE MATHEMATICS, 2014, 314 : 50 - 60
  • [42] Supereulerian graphs with width s and s-collapsible graphs
    Li, Ping
    Li, Hao
    Chen, Ye
    Fleischner, Herbert
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 79 - 94
  • [43] Planar graphs of odd-girth at least 9 are homomorphic to the Petersen graph
    Dvorak, Z.
    Skrekovski, R.
    Valla, T.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 568 - 591
  • [44] On (s,t)-Supereulerian Triangle Free Graphs
    Li, Xiaomin
    Li, Shengyu
    2009 WRI WORLD CONGRESS ON SOFTWARE ENGINEERING, VOL 2, PROCEEDINGS, 2009, : 398 - +
  • [45] On the Locating Chromatic Number of Subdivision of Barbell Graphs Containing Generalized Petersen Graph
    Asmiati
    Yana, I. Ketut Sadha Gunce
    Yulianti, Lyra
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (07): : 45 - 50
  • [46] On (s,t)-supereulerian graphs in locally highly connected graphs
    Lei, Lan
    Li, Xiaomin
    Wang, Bin
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2010, 310 (04) : 929 - 934
  • [47] LOCALLY PETERSEN GRAPHS
    HALL, JI
    JOURNAL OF GRAPH THEORY, 1980, 4 (02) : 173 - 187
  • [48] On Supereulerian 2-Edge-Coloured Graphs
    Jørgen Bang-Jensen
    Thomas Bellitto
    Anders Yeo
    Graphs and Combinatorics, 2021, 37 : 2601 - 2620
  • [49] On Supereulerian 2-Edge-Coloured Graphs
    Bang-Jensen, Jorgen
    Bellitto, Thomas
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2601 - 2620
  • [50] A note on minimum degree conditions for supereulerian graphs
    Broersma, HJ
    Xiong, LM
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 35 - 43