Linear combinations of space-time covariance functions and variograms

被引:50
|
作者
Ma, CS [1 ]
机构
[1] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
关键词
covariance; Fourier transform; intrinsically stationary; isotropic; long-range dependence; power-law decay; spectral density; stationary; variogram;
D O I
10.1109/TSP.2004.842186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The difference or a linear combination of two spacetime covariance functions (or variograms) is not necessarily a valid covariance function (or variogram). In general, there seems no simple condition that makes a linear combination permissible, unless its coefficients are non-negative. The permissibility is investigated in this paper for the linear combination of two spatial or spatio-temporal covariance functions (or variograms) isotropic in space so that we obtain flexible classes of spatial or spatio-temporal covariance functions with various properties such as long-range dependence and having different signs.
引用
收藏
页码:857 / 864
页数:8
相关论文
共 50 条
  • [31] Weighted composite likelihood-based tests for space-time separability of covariance functions
    Bevilacqua, M.
    Mateu, J.
    Porcu, E.
    Zhang, H.
    Zini, A.
    STATISTICS AND COMPUTING, 2010, 20 (03) : 283 - 293
  • [32] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Allard, Denis
    Emery, Xavier
    Lacaux, Celine
    Lantuejoul, Christian
    STATISTICS AND COMPUTING, 2020, 30 (05) : 1479 - 1495
  • [33] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Denis Allard
    Xavier Emery
    Céline Lacaux
    Christian Lantuéjoul
    Statistics and Computing, 2020, 30 : 1479 - 1495
  • [34] Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach
    Bevilacqua, Moreno
    Gaetan, Carlo
    Mateu, Jorge
    Porcu, Emilio
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 268 - 280
  • [35] On the Evaluation of Space-Time Functions
    Beal, Jacob
    Usbeck, Kyle
    Benyo, Brett
    COMPUTER JOURNAL, 2013, 56 (12): : 1500 - 1517
  • [36] Geostatistical stationary space-time covariance functions modeling of Yellow Sigatoka progress in banana crop
    J. D. P. Rodrigues
    M. C. Alves
    A. S. Freitas
    E. A. Pozza
    M. S. Oliveira
    H. J. P. Alves
    Australasian Plant Pathology, 2019, 48 : 233 - 244
  • [37] On the frequency domain composite likelihood methods for estimating space-time covariance functions for large datasets
    Mosammam, Ali M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (04) : 1146 - 1160
  • [38] Geostatistical stationary space-time covariance functions modeling of Yellow Sigatoka progress in banana crop
    Rodrigues, J. D. P.
    Alves, M. C.
    Freitas, A. S.
    Pozza, E. A.
    Oliveira, M. S.
    Alves, H. J. P.
    AUSTRALASIAN PLANT PATHOLOGY, 2019, 48 (03) : 233 - 244
  • [39] A general class of nonseparable space-time covariance models
    Fonseca, Thais C. O.
    Steel, Mark F. J.
    ENVIRONMETRICS, 2011, 22 (02) : 224 - 242
  • [40] Nonparametric Estimation of Spatial and Space-Time Covariance Function
    Choi, InKyung
    Li, Bo
    Wang, Xiao
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (04) : 611 - 630