Missing data imputation and corrected statistics for large-scale behavioral databases

被引:20
|
作者
Courrieu, Pierre [1 ]
Rey, Arnaud [1 ]
机构
[1] Univ Aix Marseille 1, Lab Psychol Cognit, CNRS, UMR 6146,Ctr St Charles, F-13331 Marseille 3, France
基金
欧洲研究理事会;
关键词
Missing data imputation; Statistics corrected for missing data; Item performance behavioral databases; Model goodness of fit; VISUAL WORD RECOGNITION; LEXICON PROJECT;
D O I
10.3758/s13428-011-0071-2
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
This article presents a new methodology for solving problems resulting from missing data in large-scale item performance behavioral databases. Useful statistics corrected for missing data are described, and a new method of imputation for missing data is proposed. This methodology is applied to the Dutch Lexicon Project database recently published by Keuleers, Diependaele, and Brysbaert (Frontiers in Psychology, 1, 174, 2010), which allows us to conclude that this database fulfills the conditions of use of the method recently proposed by Courrieu, Brand-D'Abrescia, Peereman, Spieler, and Rey (2011) for testing item performance models. Two application programs in MATLAB code are provided for the imputation of missing data in databases and for the computation of corrected statistics to test models.
引用
收藏
页码:310 / 330
页数:21
相关论文
共 50 条
  • [21] Large-scale Traffic Data Imputation Using Matrix Completion on Graphs
    Han, Tianyang
    Wada, Kentaro
    Oguchi, Takashi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2252 - 2258
  • [22] Semantic understanding and prompt engineering for large-scale traffic data imputation
    Zhang, Kunpeng
    Zhou, Feng
    Wu, Lan
    Xie, Na
    He, Zhengbing
    INFORMATION FUSION, 2024, 102
  • [23] Bayesian multiple imputation for large-scale categorical data with structural zeros
    Manrique-Vallier, Daniel
    Reiter, Jerome P.
    SURVEY METHODOLOGY, 2014, 40 (01) : 125 - 134
  • [24] Genomic and proteomic databases: Large-scale analysis and integration of data
    Cavalcoli, JD
    TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (02) : 76 - 81
  • [25] A Data Cleansing Method for Clustering Large-Scale Transaction Databases
    Loh, Woong-Kee
    Moon, Yang-Sae
    Kang, Jun-Gyu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (11) : 3120 - 3123
  • [26] Nested multiple imputation in large-scale assessments
    Weirich, Sebastian
    Haag, Nicole
    Hecht, Martin
    Boehme, Katrin
    Siegle, Thilo
    Luedtke, Oliver
    LARGE-SCALE ASSESSMENTS IN EDUCATION, 2014, 2 (01)
  • [27] Statistical inference with large-scale trait imputation
    Ren, Jingchen
    Pan, Wei
    STATISTICS IN MEDICINE, 2024, 43 (04) : 625 - 641
  • [28] Integrating GWAS summary statistics, individual-level genotypic and omic data to enhance the performance for large-scale trait imputation
    Ren, Jingchen
    Lin, Zhaotong
    Pan, Wei
    HUMAN MOLECULAR GENETICS, 2023, 32 (17) : 2693 - 2703
  • [29] Large-scale databases of proper names
    Conley, P
    Burgess, C
    Hage, D
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1999, 31 (02): : 215 - 219
  • [30] Large-scale databases of proper names
    Patrick Conley
    Curt Burgess
    Dotty Hage
    Behavior Research Methods, Instruments, & Computers, 1999, 31 : 215 - 219