Missing data imputation and corrected statistics for large-scale behavioral databases

被引:20
|
作者
Courrieu, Pierre [1 ]
Rey, Arnaud [1 ]
机构
[1] Univ Aix Marseille 1, Lab Psychol Cognit, CNRS, UMR 6146,Ctr St Charles, F-13331 Marseille 3, France
基金
欧洲研究理事会;
关键词
Missing data imputation; Statistics corrected for missing data; Item performance behavioral databases; Model goodness of fit; VISUAL WORD RECOGNITION; LEXICON PROJECT;
D O I
10.3758/s13428-011-0071-2
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
This article presents a new methodology for solving problems resulting from missing data in large-scale item performance behavioral databases. Useful statistics corrected for missing data are described, and a new method of imputation for missing data is proposed. This methodology is applied to the Dutch Lexicon Project database recently published by Keuleers, Diependaele, and Brysbaert (Frontiers in Psychology, 1, 174, 2010), which allows us to conclude that this database fulfills the conditions of use of the method recently proposed by Courrieu, Brand-D'Abrescia, Peereman, Spieler, and Rey (2011) for testing item performance models. Two application programs in MATLAB code are provided for the imputation of missing data in databases and for the computation of corrected statistics to test models.
引用
收藏
页码:310 / 330
页数:21
相关论文
共 50 条
  • [1] Missing data imputation and corrected statistics for large-scale behavioral databases
    Pierre Courrieu
    Arnaud Rey
    Behavior Research Methods, 2011, 43 : 310 - 330
  • [2] Edge-Based Missing Data Imputation in Large-Scale Environments
    Guastella, Davide Andrea
    Marcillaud, Guilhem
    Valenti, Cesare
    INFORMATION, 2021, 12 (05)
  • [3] Distributed Nonparametric Regression Imputation for Missing Response Problems with Large-scale Data
    Wang, Ruoyu
    Su, Miaomiao
    Wang, Qihua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [4] Dealing with missing values in large-scale studies: microarray data imputation and beyond
    Aittokallio, Tero
    BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) : 253 - 264
  • [5] Imputation of Missing Data in Industrial Databases
    Kamakshi Lakshminarayan
    Steven A. Harp
    Tariq Samad
    Applied Intelligence, 1999, 11 : 259 - 275
  • [6] Imputation of missing data in industrial databases
    Lakshminarayan, K
    Harp, SA
    Samad, T
    APPLIED INTELLIGENCE, 1999, 11 (03) : 259 - 275
  • [7] Cluster-based Best Match Scanning for Large-Scale Missing Data Imputation
    Yu, Weiqing
    Zhu, Wendong
    Liu, Guangyi
    Kan, Bowen
    Zhao, Ting
    Liu, He
    2017 3RD INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM), 2017, : 232 - 238
  • [8] Improved Phasing and Imputation for Large-Scale Data
    Browning, Brian L.
    Browning, Sharon R.
    Tian, Xiaowen
    GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 673 - 673
  • [9] Distribution consistency-based missing value imputation algorithm for large-scale data sets
    Yu J.
    He Y.
    Cui L.
    Huang Z.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2023, 63 (05): : 740 - 753
  • [10] Issues in multiple imputation of missing data for large general practice clinical databases
    Marston, Louise
    Carpenter, James R.
    Walters, Kate R.
    Morris, Richard W.
    Nazareth, Irwin
    Petersen, Irene
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2010, 19 (06) : 618 - 626