A Note on Kantorovich Inequality for Hermite Matrices

被引:4
|
作者
Liu, Zhibing [1 ,2 ]
Wang, Kanmin [2 ]
Xu, Chengfeng [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Jiujiang Univ, Dept Math, Jiujiang 332005, Peoples R China
关键词
Real Number; Applied Mathematic; Classical Result; Error Bound; Equivalent Form;
D O I
10.1155/2011/245767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new Kantorovich type inequality for Hermite matrices is proposed in this paper. It holds for the invertible Hermite matrices and provides refinements of the classical results. Elementary methods suffice to prove the inequality.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] A note on the rank inequality for diagonally magic matrices
    Duanmei Zhou
    Qingyou Cai
    Xiaoyan Chen
    Journal of Inequalities and Applications, 2016
  • [12] GENERALIZATION ON KANTOROVICH INEQUALITY
    Fujii, Masatoshi
    Zuo, Hongliang
    Cheng, Nan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 517 - 522
  • [13] Equivalence of the Wielandt inequality and the Kantorovich inequality
    Zhang, FZ
    LINEAR & MULTILINEAR ALGEBRA, 2001, 48 (03): : 275 - 279
  • [14] A NOTE ON THE ARITHMETIC GEOMETRIC-MEAN INEQUALITY FOR MATRICES
    KITTANEH, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 171 : 1 - 8
  • [17] Operator versions of the Kantorovich inequality
    Spain, PG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (09) : 2813 - 2819
  • [18] An extension of the operator Kantorovich inequality
    Khatib, Yaser
    Hassani, Mahmoud
    Amyari, Maryam
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (04) : 183 - 191
  • [19] 2 REMARKS ON KANTOROVICH INEQUALITY
    HENRICI, P
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (09): : 904 - &
  • [20] A glimpse at the operator Kantorovich inequality
    Moradi, Hamid Reza
    Gumus, Ibrahim Halil
    Heydarbeygi, Zahra
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (05): : 1031 - 1036