Independent domination polynomial of zero-divisor graphs of commutative rings

被引:1
|
作者
Gursoy, Necla Kircali [1 ]
Ulker, Alper [2 ]
Gursoy, Arif [3 ]
机构
[1] Ege Univ, Tire Kutsan Vocat Sch, TR-35900 Tire, Bakirkoy, Turkey
[2] Istanbul Kultur Univ, Dept Math & Comp Sci, TR-34156 Istanbul, Turkey
[3] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
Independent domination polynomial; Independent dominating set; Zero-divisor graph; Independent set; Domination number; Maximal independent set;
D O I
10.1007/s00500-077-07217-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An independent dominating set of a graph is a vertex subset that is both dominating and independent set in the graph, i.e., a maximal independent set. Also, the independent domination polynomial is an ordinary generating function for the number of independent dominating sets in the graph. In this paper, we examine independent domination polynomials of zero-divisor graphs of the ring Z(n) where n is an element of {2p, p(2), p(alpha), pq, p(2)q, pqr) and their roots. Finally, we prove the log-concavity and unimodality of their independent domination polynomials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] ON THE ZERO-DIVISOR GRAPHS OF COMMUTATIVE SEMIGROUPS
    Maimani, Hamid Reza
    Yassemi, Siamak
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (03): : 733 - 740
  • [32] A Combinatorial Analysis of Zero-Divisor Graphs on Certain Polynomial Rings
    Vietri, Andrea
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2040 - 2047
  • [33] Computing forgotten topological index of zero-divisor graphs of commutative rings
    Gursoy, Arif
    Kircali Gursoy, Necla
    Ulker, Alper
    TURKISH JOURNAL OF MATHEMATICS, 2021,
  • [34] INVARIANTS AND ISOMORPHISM THEOREMS FOR ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS OF QUOTIENTS
    Lagrange, John D.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (03) : 407 - 438
  • [35] Toroidal zero-divisor graphs of decomposable commutative rings without identity
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 807 - 829
  • [36] Computing forgotten topological index of zero-divisor graphs of commutative rings
    Gursoy, Arif
    Gursoy, Necla Kircali
    Ulker, Alper
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1845 - 1863
  • [37] COMMUTATIVE RINGS WHOSE ZERO-DIVISOR GRAPHS HAVE POSITIVE GENUS
    Aliniaeifard, F.
    Behboodi, M.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3629 - 3634
  • [38] Categorial properties of compressed zero-divisor graphs of finite commutative rings
    Duric, Alen
    Jevdenic, Sara
    Stopar, Nik
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [39] Distances in zero-divisor and total graphs from commutative rings A survey
    Chelvam, T. Tamizh
    Asir, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (03) : 290 - 298
  • [40] Some Graph Parameters of the Zero-divisor Graphs of Finite Commutative Rings
    Movahedi, F.
    Akhbari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (03)