A New Symplectic Runge-Kutta Method Generated By Radau-Right Quadrature

被引:0
|
作者
Tan, Jiabo [1 ]
机构
[1] Beijng Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we first introduce the definitions of ordinary differential equations with initial values, numerical methods, order, Runge-Kutta method, Hamiltonian system and symplecticity. Then by the order conditions for the coefficients of Runge-Kutta method and the symplecticity condition, we will construct an original Runge-Kutta method based on Radau-right quadrature formula. This method is symplectic and of order 3. The order of the proposed method is higher than the well-known symplectic methods.
引用
收藏
页码:1064 / 1068
页数:5
相关论文
共 50 条
  • [31] Order properties and construction of symplectic Runge-Kutta methods
    Li, SF
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 645 - 656
  • [32] A note on pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    [J]. BIT Numerical Mathematics, 1998, 38 : 802 - 806
  • [33] A note on pseudo-symplectic Runge-Kutta methods
    Aubry, A
    Chartier, P
    [J]. BIT, 1998, 38 (04): : 802 - 806
  • [34] SYMPLECTIC RUNGE-KUTTA SEMIDISCRETIZATION FOR STOCHASTIC SCHRODINGER EQUATION
    Chen, Chuchu
    Hong, Jialin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2569 - 2593
  • [35] A simple way constructing symplectic Runge-Kutta methods
    Sun, G
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (01) : 61 - 68
  • [36] Integration method and Runge-Kutta method
    Sanprasert, Wannaporn
    Chundang, Ungsana
    Podisuk, Maitree
    [J]. PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 232 - +
  • [37] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188
  • [38] Runge-Kutta convolution quadrature based on Gauss methods
    Banjai, Lehel
    Ferrari, Matteo
    [J]. NUMERISCHE MATHEMATIK, 2024,
  • [39] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779
  • [40] Generalized convolution quadrature based on Runge-Kutta methods
    M. Lopez-Fernandez
    S. Sauter
    [J]. Numerische Mathematik, 2016, 133 : 743 - 779